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ABSTRACT

An experiment has been conducted, measuring pianists’

sensitivity to piano key vibrations at the fingers while play-

ing an upright or a grand Yamaha Disklavier piano. At

each trial, which consisted in playing loud and long A

notes across the whole keyboard, vibrations were either

present or absent through setting the Disklavier pianos to

normal or quiet mode. Sound feedback was always pro-

vided by a MIDI controlled piano synthesizer via isolating

ear/headphones, which masked the acoustic sound in nor-

mal mode. In partial disagreement with the existing liter-

ature, our results suggest that significant vibrotactile cues

are produced in the lower range of the piano keyboard, with

perceptual cut-off around the middle octave. Possible psy-

chophysical mechanisms supporting the existence of such

cues are additionally discussed.

1. INTRODUCTION

As the importance of multisensory perception of musical

instruments by the performers is progressively being un-

covered [1], specific research is investigating the role of

haptic feedback in conveying additional cues representa-

tive of the instrument to the performing musician. Such

research covers quantitative aspects, with special regard

to the vibrations transmitted to pianists and violin play-

ers [2, 3] by their instruments, until spanning the emo-

tional [4] and affective [5] correlates coming from feeling

vibrotactile cues while being engaged in a musical perfor-

mance.

Specifically concerning the piano, keyboard makers have

long since given empirical evidence of the importance of

haptic cues in defining the quality of an instrument. First

of all touch, mostly depending on the keys’ material along
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with their dynamic response due to the connection mecha-

nism with the strings, confers a unique haptic signature to

a piano [6]. For instance, Galembo and Askenfelt showed

that a blindfolded group of expert pianists easily recog-

nized three previously played different pianos by randomly

performing over them. Conversely they lost much of their

own recognition ability when just listening to the same pi-

anos [7]. Haptic-enabled keyboard prototypes have been

described in e.g. [8, 9, 10], in which the authors highlighted

that the haptic response at the fingers carries valuable in-

formation for the pianist. More recently, Yamaha Corp. has

equipped its flagship AvantGrand digital piano line with vi-

brational transducers, aiming to reproduce the vibrotactile

feedback that pianists experience while playing the real in-

strument [11].

Nevertheless, currently the relationships between the per-

ceived quality of a piano and the haptic signature of its

keyboard have been understood only to a limited extent. It

is generally acknowledged that the use of a simplified key-

board mechanics along with keys made of plastic material,

such as those found in consumer digital pianos, inevitably

translate to a less rewarding experience for the pianist. Yet,

the subjective effects of an impoverished keyboard on the

perceived sound quality have not been quantified to date.

Even less is known about if and how the same quality is

influenced by vibrotactile feedback arriving at the pianist’s

fingers once the more prominent somatosensory experi-

ence of striking the keys has ceased, leaving space to the

vibrations traversing the instrument until the keys are re-

leased. In a related study [12], some of the present authors

conducted a pilot experiment on a digital piano modified

with the addition of vibrotactile feedback. The experiment

tested the perceived sound quality in different settings: i)

original digital piano; ii) use of a physics-based piano syn-

thesizer for external audio feedback; iii) use of the same

synthesizer for both audio and vibrotactile feedback. The

subjects preferred the combination of audio and vibrotac-

tile feedback provided by the piano synthesizer when play-

ing key sequences, whereas they promoted the quality of

the original digital instrument when performing freely. Al-
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though preliminary, these results were in good accordance

with the development stage of the synthesis software at

the time of the experiment. They suggest that vibrotac-

tile feedback modifies, and potentially improves the per-

former’s experience when playing on a digital piano key-

board.

On the other hand, while investigating the perception of

vibrations on a grand piano, Askenfelt and Jansson [2]

provided quantitative evidence that even ff notes gener-

ate partial components whose magnitude hardly exceeds

the known vibrotactile thresholds at the fingers [13]. This

is true even when those partials fall within the frequency

range where this sensitivity is highest [14]. Their mea-

surements, hence, support the claim that neither a piano

keyboard nor the keybed or the pedals should be able to

convey prominent vibrotactile cues to the pianist.

Nevertheless, the above mentioned thresholds were mea-

sured with sinusoidal vibratory signals, while lower thresh-

olds may be expected for more spectrally rich signals.

Moreover, pianos convey to the performers sensations go-

ing beyond the perception of steady vibrotactile signals.

The pianist is in fact engaged in an enactive experience

where every key depression produces a distinct audio-

haptic contact event, immediately followed by the trans-

mission of vibrotactile cues from the keyboard, caused by

the vibrating strings and resonating body of the instrument.

Such cues are subjected to disparate temporal, spatial and

spectral summation or interference effects, depending on

the sequence of played notes and chords, as well as on the

position of the hands on the keyboard. For all such effects

the literature provides only sparse data, furthermore mea-

sured in non-musical, especially laboratory setups [15]. In-

deed, Keane and Dodd [6] assumed that pianists perceive

vibrations while playing, and studied how professional pi-

anists rated different upright pianos according to the per-

ceived vibration intensity. The model offering less vibra-

tion (i.e. the one with a stiffer keybed) was preferred. The

authors however noted that the players generally did not

pay conscious attention to touch and key vibrations.

In this study we hypothesize that performers perceive vi-

brotactile cues of musical notes through their fingers while

playing. In our experiment, two independent groups of pi-

anists have been exposed to vibrations from the keyboard

while playing notes respectively on a grand and an upright

piano, both giving the possibility to switch the vibrotac-

tile feedback on and off across trials, meanwhile keeping

the auditory feedback constant. The results from the tests

suggest the existence of significant differences between the

condition with and without vibrations, for both setups.

2. TECHNICAL SETUP

The experiment made use of two Yamaha Disklavier pi-

anos, a grand model DC3 M4 (setup in Padova, “PD” here-

after) and a upright model DU1A with control unit DKC-

850 (setup in Zurich, “ZH” hereafter), offering a switch-

able “quiet mode” that allows their use as silent MIDI key-

boards. In this configuration the hammers are prevented

from hitting the strings, and therefore the piano does not

resound nor vibrate, while the keyboard mechanics is left

Figure 1: Setup for loudness estimation on the grand piano

(PD) using a KEMAR mannequin.

unaltered.

Since the experiment aimed to investigate the percep-

tion of vibrotactile cues at the keyboard while playing,

we took advantage of the switchable quiet mode to ei-

ther provide vibrations or not. In order to uniform these

two experimental conditions (vibration ON/OFF), subjects

had to be prevented from hearing the acoustic sound of

the Disklavier when set to normal configuration (i.e. the

“vibration ON” condition). Therefore, the MIDI data pro-

vided by the Disklavier pianos were used to control a

high quality software piano synthesizer 1 that was config-

ured to simulate a grand (PD) or a upright (ZH) piano.

The synthesized sound was provided by means of isolat-

ing headphones Sennheiser HDA-200 (PD) or earphones

Shure SE425 (ZH). In the latter case, earmuffs 3M Pel-

tor X5A were worn on top of the earphones to maximize

sound isolation.

The loudness of the acoustic pianos at the performer’s ear

was estimated by recording with a KEMAR mannequin all

the A keys played at various velocities (Figure 1 shows the

PD setup). Then, the dynamic response of the piano syn-

thesizer was matched to those of the corresponding acous-

tic piano, by performing similar measures on the KEMAR

mannequin equipped with the corresponding headphones.

Informal testing proved that in this configuration the acous-

tic sound of the piano was fully masked, and no difference

could be perceived in the heard sound in the two condi-

tions.

The pedals were made inaccessible and were not used in

the experiment. The wheels of the pianos (instrument-floor

contact points) were placed on stacks of rubber-foam lay-

ers, while the stools and pianists’ feet were isolated from

the floor by means of thick rubber panels, in this way pre-

venting the subjects to feel vibrations via anything but the

fingers. The two setups are shown in Figure 2.

The software piano synthesizer ran on a laptop computer,

and a RME Fireface 800 audio interface was used to col-

lect MIDI data from the Disklavier pianos and provide au-

dio feedback. The experiment was run under human con-

1 Modartt Pianoteq 4.5. See www.pianoteq.com.
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Figure 2: Disklavier setups. Top: Yamaha DC3 M4 (PD).

Bottom Yamaha DU1A (ZH).

trol with the help of a software developed in the Pure Data

environment. The program allowed to read playlists de-

scribing the series of randomized trials (e.g. A4, vibration

OFF), and record answers for each subject. The quiet mode

of the Disklavier pianos was remotely switched at need via

automatic software control. At each trial, a correctness test

was performed to check on the played note and velocity

(see Section 3 for more details).

3. EXPERIMENTAL PROCEDURE

The test was a yes-no experiment. The task was to play a

loud, long note (mf to fff dynamics, lasting 4 metronome

beats at 60 BPM) and then to report whether vibrations

were present or not, respectively by saying aloud “yes” or

“no”. The subjects were instructed to focus on the feeling

at the flesh of the fingertip during the steady-state part of

the sound. They were also told that the vibrations could be

turned on and off and therefore saying ”yes” to everything

would lead to an increased number of incorrect responses.

Only the A keys across the whole keyboard were consid-

ered, in this way reducing the experiment’s duration while

maximizing the investigated pitch range, from the leftmost

key of the piano keyboard to near its right end. The 8 A

keys were labeled with numbers (1=A0 .. 8=A7) in order

to minimize the chance of execution errors. Keys 1-4 (A0-

A3) were played with the left index finger, and keys 5-8

(A4-A8) with the right index finger.

A randomized sequence of 128 trials was provided, made

up of 16 occurrences of each A key. Half of the trials

were in the “vibration OFF” condition, corresponding to

the Disklavier set to quiet mode.

The participants were asked to sit at the piano and in-

structed on the procedure. They were explicitly told to

pay attention to the keys vibrations while playing, and not

to take into consideration any tactile cue until a key had

reached the keybed.

Before starting, the subjects wore the provided isolating

headphones (PD), or earphones and earmuffs (ZH). As re-

ported in Section 2, in this configuration they could only

hear the piano synthesizer sound, while the original sound

form the Disklavier (if present, i.e. only in normal mode)

was masked.

At each trial, a voice prompt signaled which A key to play

(numbers 1-8), and right after a metronome started.

The MIDI velocity provided by the Disklavier was

checked against the velocity range 73-127 2 by our data

acquisition software: when playing with insufficient

strength, the participants were required to repeat the trial.

The software also checked whether the right key had been

played.

After giving their judgment, the participants had to re-

move their hands from the keyboard, in this way prevent-

ing them to feel the mechanics switching the Disklavier

from/to quiet mode between the trials. The total duration

of the experiment was about 20 minutes per participant.

Two distinct groups of nine subjects participated in the

grand (PD) and upright (ZH) piano experiments, respec-

tively. The participants in the PD experiment were males,

average age 32 years. In the ZH experiment, the average

age of the participants was 37 years and three of the sub-

jects were females. Most had at least intermediate piano

skills, one at professional level, while three subjects had

practically none.

4. RESULTS

Proportions of correct responses, given by

p(c) =
hits + correct rejections

total trials
,

where hit = ”yes” response when vibrations were present,

and correct rejection = ”no” response when vibrations were

not present, were calculated for each participant individ-

ually for each A key. Average results for the upright

and grand configurations are presented respectively in Fig-

ures 3a and 3b, showing a similar trend. For the lowest

three pitches (A0 to A2), the subjects could easily discrim-

inate between the trials with and without vibrations. In

the middle register the proportion of correct responses was

still over 60%, while it finally dropped to chance level at

A5 (f0 = 880 Hz).

A sensitivity measure of detection theory d′ [17], estimat-

ing the strength of a signal given the separation and spread

of the distributions of inner responses when the signal (vi-

brations) is either present or not, was computed for the up-

2 Approximately corresponding to dynamics from mf to fff.
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Figure 3: Mean proportions correct for the upright (a) and

grand (b) piano configurations. Chance performance given

by dashed line. Error bars present within-subjects confi-

dence intervals according to [16].

right piano and for each individual separately according to

d′ = z(hits)− z(false alarms),

where z signifies Gaussian z transformation and hits =

proportion of ”yes” responses with vibrations present and

false alarms = proportion of ”yes” responses with vibra-

tions absent. The individual d′ estimates, however, suffer

from increasing statistical bias with low numbers of vibra-

tions present and absent trials (8 each). Furthermore, the

frequent occurrence of 0 and 1 proportions at low pitches,

where the task was easy, calls for adaptations of the pro-

portions in order to avoid infinite d′. Therefore, individ-

ual proportions were pooled within groups of subjects who

shared a reasonably similar individual sensitivity d′ and de-

cision criterion c, given by [18]

c = −1/2 ∗ [z(hits) + z(false alarms)]

A group d′ was estimated for each pitch as an average of

2-3 such groups in order to achieve a measure less biased

than a simple average of all individual d′s. The subjects

could be roughly divided into two main groups according

to their behavior. One group of subjects had a tendency

to say “no” in the low range, where discrimination was

easy, and to say “yes” more likely in the high range where

discrimination was practically impossible. They seemed to

aim at a more even rate of positive and negative responses

over the whole pitch range, while the second group had

an opposite strategy. The subjects from the second group

had a tendency to say “yes” in the low range and “no” in

the high range, as if they had drawn the conclusion that

there were no “yes” cases available in the high range and,

to compensate, lowered their criterion in the low range.

The estimated d′ is presented as a function of pitch in

Figure 4. Similarly to the proportions correct, the group

d′ drops to chance level at A5 and is about 0.5 at A4.

From A0 to A3 d′ drops from high to moderate sensitiv-

ity (d′ = 1 corresponds to 69% correct). The criteria and

sensitivities were more varied in the grand piano config-

uration and individuals were not easily grouped for pool-

ing proportions to estimate a group d′. Further analysis is

therefore based on proportions correct.

The cut-off point for perception of key vibrations seems

thus to be somewhere above A4 (f0 = 440 Hz). The

distributions of individual proportions correct for grand

and upright pianos were statistically tested at that pitch.

The Kolmogorov-Smirnov test supports the hypothesis that

both distributions share a same location (D = 0.111, p =
1), so the distributions were combined. The resulting dis-

tribution (sample µ = 0.615 and σ2 = 0.032) was tested

for normality by the Shapiro test (W = 0.926, p = 0.164),

indicating that the joint distribution could be roughly nor-

mal. The 95% confidence interval for the joint mean was

found by a t-test to be [0.525, 0.704]. Since chance level

(p(c) = 0.50) is just outside the confidence interval, it was

concluded that key vibrations are still perceivable at A4.

At that pitch, exactly 50% of the subjects were successful

at discriminating between the vibration ON and OFF trials,

with a minimum p(c) = 0.69 and mean p(c) = 0.771. At

A5, only one subject exceeded chance level (p(c) = 0.62).

Finding a more precise cut-off point is left for a future ex-

periment.

5. DISCUSSION

Askenfelt and Jansson measured piano key vibrations [2]

and concluded that they exceed the detection threshold

(measured by Verrillo [13, 14]) only in a narrow range

around 200 Hz, where the human sensitivity to vibrotac-

tile stimulation is highest. Our findings contradict those

results especially in the low range up to 110 Hz, where

detection was clearly easier than in the range of highest

sensitivity, where only two thirds of the subjects were suc-

cessful at detecting key vibrations. This may be explained

by the nature of the vibratory signal which was not sinu-

soidal, unlike in the threshold measurements by Verrillo.

Generally lower thresholds have been reported for complex

than sinusoidal signals in the palm area for stimuli above

250 Hz [15]. Other measurements have also revealed that
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Figure 4: Group d′ for the upright configuration. Chance

performance given by dashed line.

vibrotactile signals carry loudness, timbre and even pitch

information [19, 20], so the vibration spectrum has obvious

perceptual importance.

Human vibrotactile perception combines information

from four psychophysical channels [21], the Pacinian

channel (P) and three non-Pacinian channels (NP I, II, and

III), whose frequency response overlaps partially. Thus

vibrotactile thresholds depend on the sensitivity of each

channel at a given frequency, and suprathreshold vibra-

tions may activate two or more channels at the same time.

The P channel is most sensitive around 250 Hz, while the

NP I and NP II channels mediate lower frequency bands.

The higher sensitivity in the lowest pitch range observed

in the present study, could be caused by either relatively

high energy in the frequency range of the P channel, or

high vibration levels in the lower range, which clearly ex-

ceed the threshold of the NP channels. Moreover, in the

frequency range for the P channel, spatial summation is

known to lower thresholds. Verrillo showed that thresh-

olds decrease by 3 dB by doubling of contact area in the

range around 250 Hz but not in the lowest bands [13]. He

however considered smaller contact areas as compared to

our case, where areas could vary from the very tip of the

finger, to the whole fingertip.

Cross-modal interactions between auditory and vibrotac-

tile perception are a possible source of threshold changes,

however contradictory results are found in the literature.

For instance, Verrillo [22] reported that vibrotactile thresh-

olds increase slightly in presence of a matching (and there-

fore masking) auditory stimulus, while Ro et al. [23]

showed that sounds matching the frequency content of vi-

brotactile stimuli enhanced their perception.

Our study concerns active pressing, and the forces nor-

mally exerted by pianists over the keyboard range from 1

N (soft legato) to 50 N (fff staccato) [2]. The effects of ac-

tive pressing force on vibrotactile perception are not thor-

oughly known, but there is evidence that vibrotactile mag-

nitude sensation increases under a passive static force [24].

Motor locomotion studies have demonstrated that sub-

sensory vibratory noise applied to the soles of the feet re-

duces gait variability and falls in elderly participants [25].

Such studies have also shown that, although not signifi-

cantly, young participants improved their balance as well

when their locomotion was supported by subsensory noise

underfoot. The physical phenomenon at the base of these

results is called stochastic resonance: noise makes weak

signals occasionally achieve amplitude peaks that exceed

the somatosensory system thresholds. At that point, the re-

sulting vibrotactile sensation triggers the appropriate mo-

tor function [26]. Unfortunately, similar results have not

been investigated in motor tasks involving the arms, hands

and fingers. Nevertheless, each time a pianist strikes the

keys (s)he receives a strong, broadband vibrotactile attack

signal that progressively focuses, during decay, around the

partial components of the played notes. In a suggestive hy-

pothesis that our study cannot confirm, we speculate that

not only does the attack component enable pianists to per-

ceive otherwise sub-threshold vibrotactile stimuli – simi-

larly to what stochastic resonance allows for – it may also

help the performer increase her control over the hand mo-

tor task, and for this reason even influence the perceived

quality of the instrument as a by-product of the consequent

improvement in the musical performance.

6. CONCLUSIONS

Contradictory research results exist concerning the vibro-

tactile perception of notes from a piano keyboard. In fact,

the related literature either assumes the existence of salient

cues of vibration coming from the instrument, or is con-

versely skeptical about the ability of pianists to perceive

such cues during playing. The experiment reported in this

paper supports the former conclusion, limited to the lower

part of the keyboard, for both upright and grand pianos.

Future experimental activities will be targeted at 1) inves-

tigating perception of vibrotactile cues under more gen-

eral conditions (particularly exploring different dynamic

ranges and different tone durations, as well as using a

larger set of piano keys), and 2) understanding the role

of vibrations in subjective assessments of perceived piano

quality.
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