
MoveOSC — Smart Watches in Mobile Music Performance

Alex Migicovsky

University of Michigan

amigi@umich.edu

Jonah Scheinerman

University of Michigan

jonahsch@umich.edu

Georg Essl

University of Michigan

gessl@umich.edu

ABSTRACT

Smart watches with motion sensors offer the potential of

bringing hand-gesture based music performance to a large

audience by removing the need for custom hardware. It

further removes artifacts from the hand, as would be present

when a smart phone or a motion-controller such as the Wi-

imote are used. We discuss the potential and technical lim-

itations of a current generation commodity smart watch

(Pebble) and describe contribution to music software on

mobile devices. By using Open Sound Control (OSC) as

well as ZeroConf/Bonjour networking an accessible setup

for musical control by smart watches is provided. Further-

more the integration into the mobile music environment

urMus allows flexible use in a broad range of more sophis-

ticated performances.

1. INTRODUCTION

Motion sensing has been central to many music perfor-

mance systems. It enables gesture-based performances in

a wide array of artistic settings, ranging from glove-based

controller’s such as Lady’s Glove [1] to dance art [2] to

conducting detection [3]. The literature of motion sensing

is vast. For a review of the use of accelerometers in new

musical instrument design up until 2006 see Miranda and

Wanderley [4]. The field has garnered continued interest

with a wealth of recent contributions based both on com-

modity and custom technologies.

On the commodity side, the Wiimote controller, a com-

modity game controller using accelerometers for gesture

detection has been used in numerous projects (e.g. [5, 6]).

Baalman et al. noted that wii-motes can be difficult to use

in live performance settings and hence opted to design cus-

tom hardware to allow stage and dance sensing, includ-

ing accelerometer based sensing using XBee rather than

bluetooth. There are numerous further project that seek

to sense dance motions with an emphasis on arm or wrist

gestures. Schacher has designed custon bracelets to sense

dancer’s wrist motions [8]. Todoroff [9] describes custom

sensors that are attached to hand, lower and upper arm to

allow dance sensing. The location of the lower arm sensor

is similar to the location of commodity smart watch occu-

pies. Tanaka et al. provide a subjective affordance evalu-

ation contrasting smartphones, Wiimotes, and the Axivity

Copyright: c©2014 Alex Migicovsky et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

WAX prototype indicate a complex relationship between

suggested affordance of a gesture sensing technology and

its cultural associations by performers. It seems to us that

adding more modes of affordances that can be drawn upon

will expand the palette of performance choices. The WAX

sensor is similar to the MO sensor [11] which is designed

to support lower-arm and wrist-centric performance sens-

ing.

Commodity technology promises to bring performance

capabilities to a wide audience. Mobile devices already of-

fer rich sensor capabilities allowing a range of musical per-

formances [12]. However, a drawback of the mobile device

is that it occupies the hand, and hence imposes a certain re-

striction in what hand motions are sensibly supported. Re-

cent advances in bluetooth-enabled programmable smart

watches offers the capability of combining motion sensing

with a hands-free experience. John discusses mobile mu-

sic projects and identifies wearable interactions and mobile

commodity interactions. The work presented here bridges

these two categories by integrating smart watch interac-

tions with mobile phones.

The idea of smart watches has been explored for over

a decade. One of the earliest realized project was IBM’s

Linux Watch [14]. For a recent review of the research into

the area see Bonino et al. [15]. It has only been quite re-

cently that low-price smart watches with good integration

with other commodity hardware have emerged. Hence we

see it as justified to consider smart watches as musical per-

formance platforms at this point.

This paper describes the integration of one such watch

called “Pebble” [16] into a mobile app called MoveOSC,

allowing OSC-connected music performance controlled by

wrist motions without the need of any custom electron-

ics. In order to accomplish this, we utilize the Pebble’s

accelerometer and bluetooth capabilities. We use the ur-

Mus environment [17] for this purpose offering a broader

possibility of use of smart watches in mobile music perfor-

mance. Its goal is to enable musicians to easily leverage

their Pebble smart watch into a musical instrument, much

the same way people have been using their iPhone to do

the same. We describe the developed software pipeline as

well as discuss limitations and technical challenge of the

current setup. A similar system using laptops for pebble

integration for music performance was independently pro-

posed by Dannenberg [18].

2. OVERVIEW

A central goal was to develop an iOS application called

MoveOSC, which would make the use of accelerometer

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 692 -

mailto:amigi@umich.edu
mailto:jonahsch@umich.edu
mailto:gessl@umich.edu
http://creativecommons.org/licenses/by/3.0/

Figure 1. Overview of the MoveOSC system with its different components. Pebble sends accelerometer data over bluetooth

to an iOS app which finds OSC providers via ZeroConf service discovery. OSC data is then sent to that provider to allow

interactive music performance.

data of a smart watch easy in conjunction with popular

music performance software. This application consists of

a few different layers of software in order to create mu-

sic via Pebble (described in Figure 1). First, the MoveOSC

Pebble smart watch application sends accelerometer move-

ments to the MoveOSC iOS application. When the Pebble

accelerometer data is received by the MoveOSC iOS appli-

cation, the iOS app transforms the data into Open Sound

Control packets 1 and relays them to any listening and en-

abled OSC-compatible device or application on a Bonjour-

compatible router 2 .

In our application setup, we forward the OSC data to an

application called OSCulator.app 3 . OSCulator is middle-

ware that transforms OSC messages into other similar rep-

resentations (e.g. MIDI). Routing the OSC data through

OSCulator converts the received data for 3rd party mu-

sic software that users can utilize, since different software

packages (Logic Pro, Ableton Live / Max for Live, etc.)

expect data in various forms. In our scenario, we used

Ableton Live 9 along with Max for Live to create music

with the Pebble. Once OSCulator receives the OSC pack-

ets from the MoveOSC iOS application, OSCulator trans-

forms the OSC packets into a MIDI representation to send

to Ableton Live 9. The MIDI packets are mapped to con-

trols of different parameters, resulting in different musical

sounds based on how the Pebble accelerometer moves.

3. SMART WATCH TECHNOLOGY

Pebble is a programmable smart watch which is equipped

with an ST ARM 32-bit CORTEX-M3 CPU. The clock

face is a 144x168 pixel LCD display and it offers bluetooth

networking as well as accelerometer and magnetometer

sensors and vibrotactile display. Pebble is perhaps the first

smart watch to start a recent interest in the area. Since

then, the industry has pushed other examples into the com-

modity market. A prime example is Samsung’s Galaxy

Gear 4 . At this time these systems do not have interop-

erability standards, hence solutions are particular to the

platform. We hope that future standardization trends may

alleviate this problem.

Pebble provides a Software Development Kit (SDK) that

lets developers easily create applications that integrate with

1 http://opensoundcontrol.org/introduction-osc
2 https://www.apple.com/support/bonjour/
3 http://www.osculator.net
4 http://www.samsung.com/us/

guide-to-galaxy-smart-devices/galaxy-gear.html

both iOS and Android. This SDK consists of three compo-

nents: one for the smart watch, one for iOS, and one for

Android. Our system was implemented for iOS only, but

extension to Android are straight-forward.

4. SMART WATCH APP

The Pebble smart watch app (or for short Pebble app) uses

a simple API to listen for accelerometer events. Pebble

extends the ability to listen for accelerometer events at dif-

ferent frequencies (between measurements at 5 Hz and 100

Hz). There also exists functionality to batch the accelerom-

eter measurements in groups (between 1 measurement per

group and 25 measurements per group). The effects of

these parameters – batch count and frequency – have a

significant effect of how reliably data is transferred to the

companion smartphone application. There are other con-

cerns as well: memory pressure, incoming / outgoing Blue-

tooth message buffer size, and more. We needed to re-

fine these parameters in order to ensure that enough data is

sent to the smartphone and that it was sent at a reasonable

rate. Here we note that the bottleneck of the application

is the connection between the Pebble smart watch and the

iOS application, not between the MoveOSC iOS applica-

tion and a WiFi-connected OSC device. We thus focus on

performance of the Bluetooth messages sent between the

MoveOSC Pebble application and the MoveOSC iOS ap-

plication.

4.1 Bluetooth Performance

Initially the Pebble app displayed a real-time bar graph

of accelerometer information. However, we realized that

the data transmission speeds were affected negatively by

having the live interface. This is an indication that the

Pebble performance is not yet sufficient to maintain high-

bandwidth bluetooth connectivity and offer rapid display

updates at the same time. Hence, we removed the live

interface to obtain better Bluetooth performance. Even a

simple user interface that requires a few system resources

like an image brought down system performance. To de-

crease the memory footprint associated with the user inter-

face, we created parts of the visuals in code rather than us-

ing images. Clearly the Pebble watch is in its infancy and

these performance issues showcase that commodity wear-

able technology today still needs to improve to have a more

seamless musical experience.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 693 -

http://opensoundcontrol.org/introduction-osc
https://www.apple.com/support/bonjour/
http://www.osculator.net
http://www.samsung.com/us/guide-to-galaxy-smart-devices/galaxy-gear.html
http://www.samsung.com/us/guide-to-galaxy-smart-devices/galaxy-gear.html

The bluetooth communication itself required optimiza-

tions. Next we describe the process by which we assessed

the performance of the bluetooth connection and the ap-

proach to achieve satisfactory performance. We used a

number of metrics. These are:

Throughput: We measured throughput as the amount of

data received in a given message on the MoveOSC iOS app

divided by the time it takes between receiving two mes-

sages from the MoveOSC Pebble app on the MoveOSC

iOS app. Throughput can be determined on both the iOS

and Pebble components of MoveOSC. Note that the through-

put as we perceive is actually lower than the throughput

that the Pebble achieves due to the overhead of Pebble’s

API being a layer above the Bluetooth protocol. Through-

put also takes into consideration intentionally dropped mes-

sages – sometimes we intentionally do not send messages

from the watch because we know that a backlog of mes-

sages has occurred. These intentionally dropped messages

will show up as decreased throughput.

Throughput Consistency and Message Success Rate: An-

other metric for performance is the message success rate. If

data is retrieved at a constant interval, any data that is not

sent decreases the consistency of the data being received

on the smartphone. This means that actions taken on the

watch will not be as “live” as possible. We measure suc-

cess rate by taking the number of successful messages sent

from the watch divided by the total number of messages

sent from the watch. This calculation must be performed

on the Pebble watch since only the Pebble software knows

whether a message was sent or dropped.

Smoothness and Minimal Data Chunking: The final met-

ric we will discuss is the “smoothness” of the data being re-

ceived on the MoveOSC iOS application component. The

smoothness of the data that is flowing from the MoveOSC

Pebble application to the MoveOSC iOS application is di-

rectly correlated to the batch size of accelerometer mea-

surements. Because of this correlation we determine smooth-

ness by taking the inverse of the accelerometer data batch

size multiplied by the measurement frequency. This deter-

mines the number of measurements attempted to be sent to

the MoveOSC iOS application per second. This measure-

ment is important because it ensures that data that is being

sent to the iOS application is usable. For example, one

can imagine a scenario where the watch sends data infre-

quently, but the throughput is still high because the amount

of data sent from the watch to the phone is large (one may

want to do this to minimize the overhead of sending many

messages). However, the example clearly shows that the

system is not optimal because users would not be able to

hear the effects of their movements in real-time.

4.1.1 Finding the Optimal Parameters for Maximum

Bluetooth Performance

The simplest algorithm for the Pebble application was to

just initially set the batch count, measurement frequency,

and inbox / outbox size. This approach unfortunately re-

sulted in inconsistent performance. We tried setting these

parameters in different ways to maximize Bluetooth per-

formance, but this mechanism did not perform well. We

tried a number of more complex algorithms to try and achieve

better Bluetooth performance.

Our first algorithm attempted to “back off” sending mes-

sages once a certain amount of messages were sent unsuc-

cessfully. When a batch of accelerometer data is sent, a

status message is returned. The Pebble smart watch app

then counts the number of success versus failure messages

(+1 for success, -1 for failure). If the counter reaches zero,

the app waits a few cycles to start sending data again. We

perceived that this resulted in better transmission speeds

compared to using the simple algorithm mentioned above.

We found that the iOS companion app had little to do with

the Bluetooth data transmission issues. However, we sus-

pect that these issues arise because of the protocol that is

used for transmitting data between the Pebble smart watch

and the companion iOS app. Interestingly, we found that

when using the Pebble accelerometer data for OSC at the

same time as using either the iOS accelerometer or gyro-

scope data, the iOS motion data greatly suffered in smooth-

ness in its measurements. A likely source for this issue

may be the Pebble API library code on the iOS side. Be-

cause of this, we recommended that users not use the Peb-

ble accelerometer data at the same time as the iOS motion

data in the current version. We assume that future version

of Pebble will overcome these restrictions.

4.1.2 Interoperability

When the watch sends data to the smartphone, it specifies

both how much accelerometer data it is sending as well

as the accelerometer data itself. This allowed us to easily

modify the aforementioned parameters on the watch with-

out needing to modify the iOS component as well.

5. MOBILE DEVICE INTEROPERATION

For our purposes, we used both the iOS and smart watch

frameworks to integrate with urMus [17] to receive Pebble

accelerometer data via Bluetooth 4.0. urMus is an open-

source framework for mobile music performance and of-

fers many of the capabilities necessary for this project. In

particular Bonjour/ZeroConf and OSC networking capa-

bilities are readily available [19].

The iOS application utilizes the Pebble iOS SDK to seam-

lessly receive data from the smart watch. The iOS appli-

cation connects to any Pebble in close range. The Pebble

accelerometer data is received in batches – as described in

the previous section – and is parsed and passed along to the

urMus processing unit.

urMus offers two ways to integrate sensor data. The first

is as part of its dataflow processing engine [20], the second

is as part of its Lua event mechanism. We extended urMus

to allow Pebble to show up as input in both modalities. The

dataflow version as part of urMus’ default interface can be

seen in Figure 2.

Lua event integration is achieved by adding a new event

called OnPebbleAccelerate to urMus’ event struc-

ture. When new accelerometer data arrives via bluetooth,

the event is triggered and Lua functions registered to it will

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 694 -

Figure 2. Pebble’s accelerometer data integrated in ur-

Mus’ dataflow engine and visible in its default interface as

PAccel X, Y, and Z. The patch shows each accelerometer

axis connected to a separate sine oscillator.

be called with arguments that contain the three-axis ac-

celerometer data. An example Lua code to receive pebble

accelerometer data follows:

function ReceivePebbleData(self, x, y, z)

-- x, y, z contain

-- pebble accelerometer data

DPrint(x.." "..y.." "..z)

-- Simply printing the numbers

end

pr = Region()

pr:Handle("OnPebbleAccelerate",

ReceivePebbleData)

We have used this second version to realize the MoveOSC

iOS application. urMus uses a normed data format of -1 to

1 [20]. The accelerometer data is received in X, Y, Z co-

ordinate form using this range and is then normalized to a

valid OSC value between zero and one.

MoveOSC is designed to make Pebble easy to use as a

controller. For this reason its visual presentation is simple

and directed at facilitating quick setup of connections to

the smart watch on the one hand, and a remote OSC appli-

cation on the other. The user interface design can be seen

in Figure 3.

6. CONCLUSIONS AND FUTURE WORK

In this paper we described the design of a mobile app that

enables the use of a bluetooth enabled smart watch with

accelerometer sensors (Pebble) to be used as a generic ges-

tural controller for music. We provide generic OSC con-

nectivity offering broad applicability of the watch as a con-

troller. Further, we integrated the watch with a mobile mu-

sic environment allowing direct design of mobile-centric

musical performances. Current restrictions include limits

of the hardware with respect to CPU power.

A number of extensions to MoveOSC are thinkable. For

example, the magnetometer data could also be made avail-

Figure 3. MoveOSC’s iOS app screens for instruction and

configuration.

able for performance in a similar way as discussed for ac-

celerometer data here. The reason why we have not ex-

plored this option yet are the CPU and bandwidth issues

discussed. However we anticipate that with hardware evo-

lution this obstacle will disappear. Furthermore, feedback

to the performer could be incorporated. A backchannel

communication triggering vibrotactile or visual display can

alert the performer of relevant aspects of the performance,

such as a beat pulse, or a section transition. Finally, we

hope that smart watches will follow the evolution of smart

phones and become increasingly sensor-rich, incorporat-

ing additional sensors of interest for musical performance,

such as gyroscope sensors, visual sensing, and microphones.

Some of these trends can already be observed in emerging

technologies. For example, the Samsung Galaxy Gear con-

tains both a microphone and a camera. Hence the perfor-

mance spectrum of smart watches may well be expanded

drastically with future generations of this commodity tech-

nology.

We believe that commodity smart watches are a promis-

ing technological vehicle to enable musical performance,

following the footsteps of Wiimotes [21, 22] and multi-

touch smart phones [12] as enablers of creativity with broad-

ened accessibility. For example ubiquity of smart watches

would imply that it is easier to develop augmented dance

pieces for practitioners who do not have access or exper-

tise to custom hardware solutions. Audience participation

involving gestures become more viable as audience mem-

bers may well already possess the hardware. Distribution

of technology for classroom teaching purposes becomes

easier as getting the technology is not hindered by the lim-

its of custom production.

6.1 Acknowledgments

Many thanks to Takumi Ogata for his help integrating MoveOSC

with Ableton Live for a musical performance.

References

[1] B. Bongers, “Physical Interfaces in the Electronic

Arts,” in Trends in Gestural Control of Music, M. M.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 695 -

Wanderley and M. Battier, Eds. Paris, France: IR-

CAM, 2000, pp. 41–70.

[2] T. Hahn and C. Bahn, “Pikapika the collaborative

composition of an interactive sonic character,” Or-

ganised Sound, vol. 7, pp. 229–238, 12 2002.

[3] H. Sawada, S. Ohkura, and S. Hashimoto, “Gesture

analysis using 3d acceleration sensor for music con-

trol,” in Proceedings of the International Computer

Music Conference (ICMC), 1995, pp. 257–260.

[4] E. R. Miranda and M. M. Wanderley, New Digital

Musical Instruments: Control and Interaction Be-

yond the Keyboard. A-R Editions, 2006.

[5] T. M. Nakra, Y. Ivanov, P. Smaragdis, and C. Ault,

“The ubs virtual maestro: An interactive conducting

system,” NIME2009, pp. 250–255, 2009.

[6] D. Bradshaw and K. Ng, “Analyzing a conductor’s

gestures with the wiimote,” Proceedings of EVA Lon-

don, pp. 22–24, 2008.

[7] M. A. Baalman, V. de Belleval, C. L. Salter,

J. Malloch, J. Thibodeau, and M. M. Wanderley,

“”sense/stage - low cost, open source wireless sensor

infrastructure for live performance and interactive”,”

in Proceedings of the International Computer Mu-

sic Conference (ICMC), New York and Stony Brook,

2010.

[8] J. C. Schacher, “Traces - Body, Motion and Sound,”

in ”Proceedings of the International Conference on

New Interfaces for Musical Expression”, May 30 -

June 1 2011.

[9] T. Todoroff, “Wireless digital/analog sensors for mu-

sic and dance performances,” in Proceedings of the

International Conference on New Interfaces for Mu-

sical Expression, Oslo, Norway, 2011.

[10] A. Tanaka, A. Altavilla, and N. Spowage, “Gestural

Musical Affordances,” in Proceedings of the 8th In-

ternational Conference on Sound and Music Comput-

ing, Padova, Italy, 2011.

[11] N. Schnell, F. Bevilacqua, N. Rasamimanana,

J. Bloit, F. Guedy, and E. Flety, “Playing the ”MO”-

Gestural Control and Re-Embodiment of Recorded

Sound and Music,” in Proceedings of the Interna-

tional Conference on New Interfaces for Musical Ex-

pression (NIME), Oslo, Norway, 2011.

[12] G. Essl and M. Rohs, “Interactivity for Mobile Music

Making,” Organised Sound, vol. 14, no. 2, pp. 197–

207, 2009.

[13] D. John, “Updating the Classifications of Mobile Mu-

sic Projects,” in Proceedings of the Conference on

New Interfaces for Musical Expression (NIME 2013),

Daejeon & Seoul, South Korea, 2013.

[14] M. T. Raghunath and C. Narayanaswami, “User

interfaces for applications on a wrist watch,”

Personal Ubiquitous Comput., vol. 6, no. 1,

pp. 17–30, Jan. 2002. [Online]. Available: http:

//dx.doi.org/10.1007/s007790200002

[15] D. Bonino, F. Corno, and L. D. Russis, “dwatch: A

personal wrist watch for smart environments,” Proce-

dia Computer Science, vol. 10, no. 0, pp. 300 – 307,

2012. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S1877050912003973

[16] E. Migicovsky, “Pebble – e-paper watch for

iphone and android,” User manual, available online

at: http://www.pebble-smartwatch.de/wp-content/

uploads/2013/03/user manual.pdf, retrieved January

29, 2014., November 29 2012.

[17] G. Essl, “UrMus – An Environment for Mobile

Instrument Design and Performance,” in Proceed-

ings of the International Computer Music Conference

(ICMC), Stony Brooks/New York, June 1-5 2010.

[18] R. Dannenberg, “Pebble music,” March 15 2014,

(video) Retrieved July 1, 2014. [Online]. Available:

http://www.youtube.com/watch?v=SUVP4DRIWfc

[19] G. Essl, “Automated Ad Hoc Networking for Mo-

bile and Hybrid Music Performance,” in Proceed-

ings of the International Computer Music Conference

(ICMC), Huddersfield, UK, 2011.

[20] ——, “UrSound - Live Patching of Audio and Mul-

timedia using a Multi-Rate Normed Single-Stream

Data-flow Engine,” in Proceedings of the Interna-

tional Computer Music Conference (ICMC), Stony

Brooks/New York, June 1-5 2010.

[21] G. Paine, “Interfacing for dynamic morphology in

computer music performance,” in Proceedings of the

2007 International Conference on Music Communi-

cation Science, 2007, pp. 115–118.

[22] E. L. Wong, W. Y. Yuen, and C. S. Choy, “Designing

wii controller: a powerful musical instrument in an

interactive music performance system,” in Proceed-

ings of the 6th International Conference on Advances

in Mobile Computing and Multimedia. ACM, 2008,

pp. 82–87.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 696 -

http://dx.doi.org/10.1007/s007790200002
http://dx.doi.org/10.1007/s007790200002
http://www.sciencedirect.com/science/article/pii/S1877050912003973
http://www.sciencedirect.com/science/article/pii/S1877050912003973
http://www.pebble-smartwatch.de/wp-content/uploads/2013/03/user_manual.pdf
http://www.pebble-smartwatch.de/wp-content/uploads/2013/03/user_manual.pdf
http://www.youtube.com/watch?v=SUVP4DRIWfc

