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ABSTRACT

The purpose of this paper is to propose “interval scale,” a

new concept defined as a set of ordered pitch-class inter-

vals. Unlike an ordinary scale, this concept restricts usable

intervals and doesn’t restrict pitch classes directly. This

provides possibilities that interval scales can be used in

atonal music that uses all pitch classes and can be used

to express some differences in a similar way to ordinary

scales, depending on the selection of the elements. In this

paper, we first present two existing musical pieces that can

be interpreted as being based on interval scales, and see

the possible effectiveness of this concept to express some

senses of tonality. Next, we show that an interval scale

is a generating set of a mathematical group and prove the

necessary and sufficient condition for an interval scale to

generate all pitch classes as a condition of atonality. Fur-

thermore, the relationship between tone row and interval

scale is examined, and the necessary and sufficient condi-

tion for an interval scale to be preserved by several tone-

row transformations is proved. These results will provide

a basic understanding and some criteria of selecting inter-

val scales for composers who create music based on this

concept.

1. INTRODUCTION

In tuning systems that divide an octave into 12 notes like 12

equal temperament, pitch classes C,C#, · · · , B are iden-

tified with the set Z12 that consists of residue classes of

Z mod 12. A scale in such tuning systems can be repre-

sented as a subset of Z12. For example, {0,2,4,5,7,9,11}
is the diatonic scale and {0,1,2,3,4,5,6,7,8,9,10,11} is the

chromatic scale, where m denotes the class represented by

an integer m(0 ≤ m ≤ 11)1 . Similarly, tuning systems

which divide an octave into n notes are represented as Zn,

and scales in such tuning systems are subsets of Zn.

However, Zn can be interpreted in another way. The

collection of all of ordered pitch-class intervals2 in a tun-

ing system of n notes can be also represented as Zn (i.e.,

Copyright: c⃝2014 Tsubasa Tanaka et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

1 In this paper, we identify a scale with another scale when they are
identical as sets. For example, we ignore the difference between Ionian

scale {0, 2, 4, 5, 7, 9, 11} and Mixolydian scale {7, 9, 11, 0, 2, 4, 5}.
2 The interval between two pitch classes is called ordered pitch-class

interval [1]. However, we use the term “interval,” if it would not cause
confusion.

= {y− x(mod n)|x, y ∈ Z}, where Z represents pitches).

The purpose of this paper is to investigate this interval sys-

tem Zn and propose the concept of “Interval scale,” which

is defined as follows:

Definition 1 (interval scale3 ). An interval scale is a set of

intervals represented as a subset of the interval system Zn

(The empty set is not regarded as an interval scale).

The reason we think this concept is important is that it

may have the possibility to express some differences de-

pending on the selection of its elements in a similar way

to the selection of ordinary scales such as major scale, mi-

nor scale, church modes, etc. The advantage of the interval

scale over an ordinary scale is that it can be used in atonal

music that uses all pitch classes, as is explained later. In

contrast, ordinary scales are not effective in atonal music

because they restrict usable pitch classes.

In this paper, we describe the properties of interval scale

in several aspects. In Section 2, we present two existing

musical pieces that can be interpreted with different inter-

val scales, and see the possible effectiveness of this con-

cept to express some senses of tonality. However, objective

evaluation of how different interval scales are perceived

differently is beyond the scope of this paper. Section 3 and

beyond focus on investigating the mathematical structures

of interval scales. In Sections 3 and 4, we show that the in-

terval scale has a deep relationship with group theory and

examine the diversity of interval scales as group genera-

tors. In Section 5, the relationship between tone rows and

interval scales is investigated.

2. ROLE OF INTERVAL SCALE

In this section, we give two examples of musical pieces to

show that there are relevant existing pieces and to observe

the role of interval scales.

2.1 Ligeti’s “Étude 2: Cordes à vide”

The first example, Ligeti’s piano piece “Étude 2: Cordes

à vide (Open Strings),” was composed using many perfect

fifths, as the title shows. Thanks to the extensive use of

specific intervals, this piece has a strong sense of tonality.

The collection of all intervals between consecutive notes

from the beginning to the end of bar 2 forms an interval

scale {5, 6, 7, 8} (see Figure 1). This interval scale has a

small number of elements and consists of consecutive in-

tegers. Not only 7 and 5, which represent ascending and

3 Although we use this name, it would also be appropriate to call it
“mode of intervals” after Messiaen’s piece (or concept) “Mode de valeurs
et d’intensités (Mode of values and intensities)” [2, 3]
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Figure 1. The opening of Ligeti’s “Étude 2: Cordes à

vide.” The numbers denote intervals between consecutive

notes in unit of semitone. [4]

descending perfect fifths, respectively, but also the neigh-

boring intervals 6 and 8 are used in this fragment. This

enables the melodies to deviate a little from the movement

of fifths and provide variety to the melodic movements.

Concerning the constitution of pitch classes (scale), how-

ever, all of 12 pitch classes appear by the end of the second

slur of the right hand part. Therefore, this fragment can be

interpreted as being based on the chromatic scale.

However, the sonority of this piece is different from or-

dinary pieces that use twelve tones. This specificity would

be well explained by the gap between the size of scale and

that of interval scale. We can consider that the few ele-

ments in the interval scale is associated with the large bias

of sonority, and that the interval scale plays a role to medi-

ate atonality and a sense of tonality.

2.2 Berg’s “Violin Concerto”

The next example is the twelve-tone row of Berg’s “Violin

Concerto” (Figure 2).

Figure 2. 12-tone row of Berg’s “Violin Concerto.” [5, 6]

The regularity of this tone row is easy to find. The major

3rd and minor 3rd appear early, and the last three intervals

are two semitones. The collection of these intervals forms

an interval scale {2, 3, 4}. These intervals are closely re-

lated to tonal music. The intervals 3 and 4 are constituent

of major and minor triads, and 2 is one of the most impor-

tant melodic intervals in tonal music. In spite of his use

of twelve-tone technique, Berg is famous for pieces that

hold some sense of tonality [7]. These intervals would be

a good explanation for the sense of tonality in this piece.

Although the sonority of this tone row (or this piece) and

the selection of intervals are different from Ligeti’s exam-

ple, these examples share common properties: (1) all of

12 pitch classes appear; (2) the interval scales have only a

small number of elements; and (3) the elements in the in-

terval scales are consecutive integers. Are these occurring

accidentally or inevitably? These questions are discussed

in the later chapters.

The tone row of this piece is a significant contrast to the

“all-interval series,” which is a twelve-tone row that has all

types of intervals except for 0. All-interval series can be in-

terpreted that its interval scale is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11} and that the sense of tonality is excluded systemati-

cally by avoiding the bias of intervals as well as that of

pitches. This contrast indicates that there is a freedom of

selecting intervals in a tone row. We can consider that the

use of an interval scale in a tone row is to organize the char-

acter of sonority by utilizing this freedom, and that the in-

terval scale plays a role to coordinate atonality and a sense

of tonality, which are seemingly contradictory properties.

3. ALGEBRAIC STRUCTURE

In the previous section, we presented existing musical pieces

and showed their common characteristics and the possible

effectiveness of interval scales. The next problem is how

to select appropriate interval scales to compose new pieces.

Before dealing with this problem, we examine the mathe-

matical structure of the interval scales and Zn.

3.1 Additive Operation of Intervals

As is mentioned in Section 1, a tuning system like n-equal

temperament and its interval system are Zn = {0, 1, · · · ,
n− 1}. Zn is not just a set, but it has an algebraic struc-

ture, a group in which the additive operation of two given

elements is defined. This additive operation is naturally

understood as the addition of intervals. For example, “2 +
10 = 0” means “two semitones + ten semitone equals an

octave.” However, if the same addition is interpreted as an

addition of two pitches, the meaning can not be understood

naturally. This is the same with the time: Although we

would think “2 o’clock plus 2 o’clock equals 4 o’clock”

is meaningless, we would find meaning in “two hours plus

two hours equals four hours.” Therefore, we find more in-

terest in the intervals system Zn than in the tuning system

Zn from the viewpoint of group theory.

3.2 Interval Scale as Group Generators

Let’s confirm the definition of group [8]:

Definition 2 (Group). Let G be a set in which an operation

“·” for all a, b ∈ G is defined and a · b is also contained in

G. G is a group if it satisfies the following three axioms:

1. Associativity: ∀a, b, c ∈ G, (a · b) · c = a · (b · c).

2. Identity element; ∃e ∈ G such that ∀a ∈ G ae =
ea = a.

3. Inverse element: ∀a ∈ G, ∃b ∈ G such that a · b =
b · a = e.

The interval system Zn with the additive operation of in-

tervals “+” satisfies these axioms. 0 is the identity element

and n− a is the inverse element of a. This inverse element

is denoted by −a.

If H is a subset of a group G and it is also a group, H

is called a subgroup of G. The number of elements of G

is called the order of G. If a set G satisfies the definition

except for the second and third conditions, G is called a

semigroup [9]. A semigroup is not required to have an

identity element and inverse element. If H is a subset of

a semigroup G and it is also a semigroup, it is called a

subsemigroup of G.
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Definition 3 (Group Generators). Let G be a group and S

be a subset of G. The smallest subgroup of G that contains

S is called the group generated by S and it is denoted by

< S >. S is called a generating set (generators) of < S >.

Using “+” as the notation of the operation, < S > can

be also expressed by the following equation:

< S >= {ϵ1s1 + ϵ2s2 + · · ·+ ϵrsr|sj ∈ S, ϵj = ±1, r ∈ N}.
(1)

This means that every element of < S > can be expressed

as the combination of the elements of S and their inverses.

Similarly, generators of a semigroup can be defined as

follows:

Definition 4 (Generators of semigroup). Let G be a semi-

group and S be a subset of G. The smallest subsemigroup

of G that contains S is called the semigroup generated by

S and it is denoted by ≪ S ≫. S is called a generating

set (generators) of ≪ S ≫.

Using “+” as the notation of the operation, ≪ S ≫ can

be also expressed by the following equation:

≪ S ≫= {s1 + s2 + · · ·+ sr|sj ∈ S, r ∈ N}. (2)

This means that every element of ≪ S ≫ can be expressed

as the combination of the elements of S. The difference of

generators of a group and semigroup is whether the inverse

elements are used or not.

Creation of melodies based on interval scales is directly

related to the manner semigroups are generated without us-

ing inverse elements, as in Equation 2. Figure 3 shows the

process of creating multiple melodies using the same in-

terval scale. In this figure, the elements of interval scale

Figure 3. Two melodies based on the same interval scale

{2, 6} (the red and blue paths) and the semigroup gener-

ated by it ≪ {2, 6} ≫= {0, 2, 4, 6, 8, 10} (black dots).

{2, 6} (this corresponds to S in Equation (2) ) are freely

selected and sequentially added. Equation (2) can be inter-

preted as the process that the collection of all pitch classes

(intervals from the reference point 0) that can appear in the

process of making all possible melodies (paths) from an in-

terval scale forms a semigroup. The interval scale is a set

of generators of this semigroup. The examples of Ligeti

and Berg can be reinterpreted as the processes of sequen-

tially generating Zn as a semigroup from the interval scales

{5, 6, 7, 8} and {2, 3, 4}, respectively.

From comparing Equation (1) and (2), we see that < S >

is a bigger set than or equal to ≪ S ≫ in general. How-

ever, if In is an interval scale of Zn, < In > and ≪ In ≫
are indeed the same set, as proved in the next proposition.

An interval scale of Zn is denoted by In hereafter.

Proposition 1. The semigroup ≪ In ≫ is identical with

the group < In >.

Proof. As is mentioned in the next section, Zn is a cyclic

group of order n. By the definition of a cyclic group, any

element of Zn s satisfies ns = e. Because (n− 1)s+ s =
ns = e, (n − 1)s is the inverse of s. If s ∈ <<In>> then

(n − 1)s ∈ <<In>> because of Equation (2). Therefore,

<<In>> contains −s. Therefore, any element of < In >

can be expressed as an element of <<In>>, i.e. < In >⊆
<<In>>. Conversely, it is obvious that < In >⊇ <<In>>

because of Equation (1) and Equation (2).

From this proposition, the semigroup <<In>> can be re-

garded as a group, and In can be regarded as the group

generators. This also means that a melody can revisit to

any points that are already visited using inverse elements

that exist in <<In>>.

3.3 Circle of Fifth and Cyclic Group

Zn has n elements and all of these elements are expressed

by additions of a semitone 1 like 1, 1+1 = 2, 1+1+1 = 3,

· · · , 1+1+· · ·+1 = n = 0. The last one, n-times addition

of 1, returns to 0. Like this group, a group that consists of

the elements generated by only one element g is called a

cyclic group and denoted by < g >.

In general, a generator of a cyclic group is not unique. For

example, another generator of Z12 is the perfect fifth 7. It

generates all of Z12 like [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0].
This sequence is the so-called circle of fifth. However, if

we take whole tone 2 as a generator, the sequence contains

only even numbers like [0, 2, 4, 6, 8, 10, 0] and only a sub-

group {0, 2, 4, 6, 8, 10} is generated.

3.4 Two-Stage Extension of Circle of Fifth

Interestingly, Berg wrote a list of circles of every interval

in a letter to Schönberg [10] and these circles were used

in Berg’s Opera “Wozzeck” [7]. These circles are called

“interval cycles” by George Perle [10]. Interval cycles cor-

respond to all of cyclic groups embedded in Z12. Thus, a

cyclic group (interval cycle) can be regarded as an exten-

sion of the circle of fifth.

From the viewpoint of interval scale, we can extend the

interval cycle further. While an interval cycle can be gener-

ated by only one interval (generator), it generates only one

path of melody. In contrast, generators that have more than

one element can generate multiple melodies as in Figure 3.

Thus, group generation by interval scale can be regarded

as an extension of the interval cycle. This extension allows

us to select intervals freely from multiple elements just like

selecting pitches from multiple elements in a scale.

4. SELLECTION OF INTERVAL SCALE

Fortunately, every subgroup of a cyclic group is also a

cyclic group [8]. Because Zn is a cyclic group, there are

no other subgroups than cyclic groups. Then, the prob-

lem for us is the relationship between In and Zn
4 . There

4 There are already many studies relevant to groups of musical inter-
vals. For example, Xenakis mentioned the group of pitch intervals [11].
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are cases where the group generated by an interval scale

is smaller group than whole Zn like < 2 > in Z12, and

there are other cases where whole Zn is generated. This

depends on the selection of the interval scale. In this pa-

per, we place interval scale as a possible system to gen-

erate atonal music. From this viewpoint, the problem to

be solved is which cyclic groups are generated depending

on the selection of interval scales and under what condi-

tion whole Zn is generated. In this section, we investigate

these problems. Solving these problems would enable us

to know how to select interval scales.

First, we define a concept “chromatic” as a criterion of

atonality:

Definition 5 (Chromatic). The group generated by In is

said to be chromatic if it is identical with whole Zn.

The following lemma, which will be used later, is an ex-

tension of the famous “Euclid’s lemma.”

Lemma 1 (Generalized Euclid’s lemma). There exists a

combination of integers a1, a2, · · · , ai such that a1y1 +
a2y2 + · · · + aiyi = d, where yk are integers (i > 0,

1 ≤ k ≤ i) and gcd(y1, y2, · · · , yi) = d5 .

Proof. Mathematical induction is used to prove this state-

ment. In the case where i = 1, either a1 = 1 or a1 = −1 is

the solution because gcd(y1) = |y1|. In the case where i =
2, the statement is true, because it is the ordinary version

of Euclid’s lemma. From the prerequisite of the statement

where i = k + 1, gcd(y1, y2, · · · , yk, yk+1) = d. Let D

be gcd(y1, y2, · · · , yk), then gcd(y1, y2, · · · , yk, yk+1) =
gcd(D, yk+1) = d. From the statement where k = 2,

we assume that there exists a combination of integers A,B

such that AD + Byk+1 = d. From the statement where

i = k, we assume that there exist a combination of integers

a1, a2, · · · , ak such that (a1y1+ a2y2+ · · ·+ akyk) = D.

In AD + Byk+1 = d, let’s substitute D, then A(a1y1 +
a2y2 + · · · + akyk) + Byk+1 = d. We see that the coef-

ficients of yk are integers. Therefore, the statement is true

in the case where i = k + 1.

Theorem 1 (Cyclic group < d >). < In > is identical

with the cyclic group < d >, where In = {x1, x2, · · · , xi},

d is the greatest common divisor of {x1, x2, · · · , xi}, and

0 ≤ xk ≤ n− 1(1 ≤ k ≤ i, i > 0).

Proof. < In >⊆< d > is obvious, because any elements

of In are the classes of multiple numbers of d. Conversely,

if d ∈< In > is true, < In >⊇< d > is also true. There-

fore, d ∈< In > is what we should verify here. From

Lemma 1, there exists a combination of integers a1, a2,

· · · , ai such that a1x1+a2x2+ · · ·+aixi = d. Therefore

a1x1+a2x2+· · ·+aixi = d. Because the left-hand side is

a member of < In >, d is also a member of < In >.

In Lewin’s GIS (generalized interval system), intervals are defined on an
abstract space, and the group of intervals on this space, which is denoted
by IVLS, were studied [12, 13]. Interval system Zn is a specific case
of IVLS. Morris made detailed studies about the groups that consist of
tone-row transformations [14]. However, how groups are generated from
multiple generators hasn’t been thoroughly studied.

5 For convenience, we define gcd(y1) = |y1| and gcd(0, 0, · · · , 0)
= 0.

This theorem means that < In > is completely deter-

mined and classified by d. For example, {0, 8, 10} and

{6, 8} in Z14 shares the greatest common divisor 2. There-

fore, both interval scales generate the same subgroup <

2 >= {0, 2, 4, 6, 8, 10, 12}6 .

Theorem 2 (Condition to be chromatic). < In > is chro-

matic iff d and n are co-prime.

Proof. < In > is chromatic. ⇐⇒< d > = Zn (because of

Theorem 1). ⇐⇒ < d > has 1. ⇐⇒ ∃B ∈ Z s.t. Bd = 1.

⇐⇒ ∃A,B ∈ Z s.t. An + Bd = 1. ⇐⇒ n and d are

co-prime (partly because of Lemma 1).

This theorem can be used to judge whether In can gen-

erate atonal music that uses all of n pitch classes. In addi-

tion, if n is a prime number and In ̸= {0}, then < In >

is always chromatic, because d and n are co-prime. This

is highly suggestive since the nearest neighbors of 12, 11
and 13, are prime numbers. This is as if n avoids prime

numbers. Contrary to prime numbers, 12 is the number

whose number of divisors is the largest in natural numbers

less than 24. Thanks to this fact, I12 can generate relatively

large numbers of subgroups. This may have something to

do with the reason why 12 has been the standard7 .

If In contains two consecutive elements x and x+ 1,

then < In > is chromatic because d = 1. This is the

case of the interval scales of Ligeti and Berg. Here, we

can guess the meaning of the selections of their interval

scales. Although the smallness of the number of elements

of an interval scale may contribute to clarify characteris-

tics of sonority or sense of tonality, it may also prevent

the group < In > from becoming chromatic because the

smallness of the number of elements tends to increase d

(see Theorem 1). However, the use of the consecutive in-

terval scale ensures atonality. Therefore, we can interpret

that the selections of Ligeti and Berg share a reasonable

strategy to achieve a good balance between atonality and

sense of tonality.

5. TONE ROW TRANSFORMATIONS AND

INTERVAL SCALE

In this section, we investigate the relationship between tone

row transformations and the interval scale8 . Tone rows9

are usually related to their transformations such as trans-

position (Ti), prime (P ), inversion (I), retrograde (R), and

retrograde inversion (RI = IR). From the viewpoint of

interval scale, one of the principal problems is how the

interval scales of tone rows are transformed accompanied

by the tone-row transformations. However, it is obvious

that transpositions of tone rows don’t change the interval

6 The formula for calculating the order of < In > can be created,
though we don’t deal with it here.

7 Based on this idea, selecting n that realizes local maximum values of
a divisor function (a function that calculate the number of divisors of n)
may be a good choice for microtonal music composition.

8 In general, interval scales are not necessarily used together with tone
rows.

9 In this section, n is not necessarily twelve, and the number of notes
in a tone row is not necessarily twelve nor n.
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scales. Therefore, we only focus on a group of four trans-

formations, which are P , I , R, RI , where P is the identity

element of this group and does nothing to the tone row10 .

First, let’s formally define the interval scale of a tone row:

Definition 6 (Interval scale of tone row). Let Xn be a tone

row Xn = [x1, x2, · · · , xm](xk ∈ Zn, 1 ≤ k ≤ m,m >

1). The interval scale of a tone low Xn is denoted by

IS(Xn) and is defined as the set of differences of consec-

utive pitch classes, i.e. {xk − xk−1|2 ≤ k ≤ m}.

For example, IS(X6) of the tone row X6 = [0, 4, 3, 2] is

{4, 5}. There is another key definition about a characteris-

tic of interval scale:

Definition 7 (Symmetric11 ). An interval scale In is said

to be symmetric, if In is invariant by the transformation

of interval scale Inv, which replace each interval to the

inverted interval (i.e. In = Inv(In), Inv(In) = {0 −
a|a ∈ In}).

For example, {5, 6, 7} in Z12 is symmetric because Inv({
5, 6, 7}) = {5, 6, 7}, and {2, 3, 4} in Z12 is not symmetric

because Inv({2, 3, 4}) = {8, 9, 10}.

Theorem 3 (Condition of invariance).

(a) IS(Xn) = IS(I(Xn)) ⇐⇒ IS(Xn) is symmetric.

(b) IS(Xn) = IS(R(Xn)) ⇐⇒ IS(Xn) is symmetric.

Proof. (a): Let Yn = [y1, y2, · · · , ym−1] be the series of

interval between the consecutive elements of tone row Xn =
[x1, x2, · · · , xm](m > 1, xk ∈ Zn). Similarly, the series

of interval of I(Xn) is [−y1,−y2, · · · ,−ym−1]. There-

fore, IS(Xn) = {y1, y2, · · · , ym−1} and IS(I(Xn)) =
{−y1,−y2, · · · ,−ym−1}. From these, the condition that

IS(Xn) = IS(I(Xn)) means {y1, y2, · · · , ym−1} = {−y1,

−y2, · · · ,−ym−1}, i.e. IS(Xn) = Inv(IS(Xn)), which

is indeed the definition of a symmetric interval scale.

(b): The series of interval between the consecutive ele-

ments of tone row R(x) = [xm, xm−1, · · · , x1](m > 1) is

[−ym−1,−ym−2, · · · ,−y1] and IS(R(x)) = {−y1,−y2,

· · · ,−ym−1} = IS(I(x)). In a similar way to the case of

(a), therefore, the condition IS(x) = IS(R(x)) is equiva-

lent to the condition that IS(Xn) is symmetric.

From this theorem, we find that the use of the symmet-

ric interval scale means that I and R can be used without

“modulation” of the interval scale.

Theorem 4 (Retrograde inverse). IS(x) = IS(R◦I(x)) =
IS(I ◦R(x)).

Proof. Since the series of interval of I ◦ R(x) is [ym−1,

ym−2, · · · , y1], IS(I ◦R(x)) = {ym−1, ym−2, · · · , y1} =
IS(x). The second equality of the statement is derived

from I ◦R(Xn) = R ◦ I(Xn).

This theorem shows that retrograde inverse always doesn’t

change the interval scale of the tone row.

10 These transformations form a Klein four-group whose operation is
the composition of transformations.

11 Rahn used the terms “inversionally symmetrical” [1]. However, it
was used for pitch-class sets, not for sets of interval.

6. CONCLUSION

In this paper, we proposed the concept of “interval scale”

and showed that it is a generating set of a subgroup of Zn.

In addition, we showed that the group generated by an in-

terval scale is characterized by d, the greatest common di-

visor of the interval scale, and also showed the necessary

and sufficient condition for the group generated by an inter-

val scale to be chromatic. From this condition, we found

that the use of consecutive intervals may be a reasonable

strategy to satisfy atonality and a sense of tonality, which

are seemingly contradictory properties. Finally, we inves-

tigated the relationship between tone-row transformations

and interval scale and showed the necessary and sufficient

condition for the interval scale of a tone row to be un-

changed by the group of transformations P , I , R, and IR.

These results will provide a basic understanding and some

criteria of selecting interval scales for composers who cre-

ate music based on this concept.
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