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ABSTRACT 

Research evaluating perceptual responses to music has 

identified many structural features as correlates that 

might be incorporated in computer music systems for 

affectively charged algorithmic composition and/or ex-

pressive music performance. In order to investigate the 

possible integration of isolated musical features to such a 

system, a discrete feature known to correlate some with 

emotional responses – rhythmic density – was selected 

from a literature review and incorporated into a prototype 

system. This system produces variation in rhythm density 

via a transformative process. A stimulus set created using 

this system was then subjected to a perceptual evaluation. 

Pairwise comparisons were used to scale differences be-

tween 48 stimuli. Listener responses were analysed with 

Multidimensional scaling  (MDS). The 2-Dimensional 

solution was then rotated to place the stimuli with the 

largest range of variation across the horizontal plane. 

Stimuli with variation in rhythmic density were placed 

further from the source material than stimuli that were 

generated by random permutation. This, combined with 

the striking similarity between the MDS scaling and that 

of the 2-dimensional emotional model used by some af-

fective algorithmic composition systems, suggests that 

isolated musical feature manipulation can now be used to 

parametrically control affectively charged automated 

composition in a larger system. 

1. INTRODUCTION 

Computer music systems for algorithmic composition can 

use both musical feature-sets and specifications for iso-

lated musical features as input rules. Whilst many such 

systems exist, research documenting the precise affective 

correlation of isolated musical features is sparse. In the 

future, affective correlations to these musical features 

might be exploited by systems for emotionally-driven 

algorithmic composition. However, perceptual evalua-

tions of discrete musical features in the context of these 

affective correlations are not readily available. This paper 

presents work towards this goal by implementing an iso-

lated musical feature in a prototype system and subjecting 

the generated output to a perceptual evaluation. 

   When considering the selection of an appropriate musi-

cal feature to implement, previous research discussing 

affective performance algorithms confirmed that feature 

choice is a complex issue [1].  Therefore, a survey of 

affective responses to musical features in literature was 

carried out in order to determine likely correlates for af-

fective algorithmic composition. Interested readers can 

find more exhaustive reviews on the link between music 

and emotion in [2] and the recent special issue in Musciae 

Scientiae [3].  

1.1 Musical features as perceptual vectors 

Whilst some musical features have well-defined acoustic 

cues, others have more complicated, even overlapping 

cues. Pitch, for example, is well correlated acoustically 

with fundamental frequency, whilst tremolo is well corre-

lated with amplitude envelope. Meter, on the other hand, 

which has been found to be correlated with some emo-

tions by Kratus [4], correlates with both frequency and 

time-derived acoustic cues [5] as a combination of dura-

tion, accent, and repetition. Therefore an awareness of 

listeners’ methods for perceiving such features, and any 

hierarchical interaction between such features becomes 

important when selecting an isolated musical feature for 

experimentation.  

   A literature review of existing systems for affectively 

driven algorithmic composition suggested that modality, 

rhythm, and melody had been most commonly imple-

mented, with 29, 29, and 28 instances respectively in the 

literature [6]. Other major features that had been imple-

mented by systems surveyed in the literature included 

timbre, dynamics, tempo, and articulation. Of the two 

most popular features, modality and rhythm, modality 

included 9 direct references and 20 references to sub-

features (register, key, tonality etc). Rhythm included 11 

direct references and 18 references to sub-features (meter, 

duration, time-signature etc). Therefore, rhythm appeared 

to be the most universally agreed upon feature-set includ-

ed in existing systems for affective algorithmic composi-

tion. However, for the purposes of this prototype system 

and its evaluation, rhythm would be a difficult selection 

as an isolated feature for perceptual evaluation due to the 

complex interaction of many of the sub-features and con-

tributory acoustic cues involved. Therefore, the most 

common sub-feature of rhythm was chosen for the proto-

type system in this experiment, in order to minimize un-

wanted interaction from other musical features. 
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2. PROTOTYPE DESIGN 

Rowe [7] describes three methodological approaches to 

algorithmic composition: generative, sequenced, or trans-

formative. Transformative systems use existing material 

as the source – one or more transformations are applied to 

the input material in order to yield related material at the 

output stage. A simple inversion might be considered an 

example of a transformative process. Given the success-

ful implementation of previous transformative systems 

(see for example, the Experiments in Musical Intelligence 

work of Cope [8]–[10]), the prototype system was de-

signed to use a transformation algorithm in order to ma-

nipulate the selected, isolated musical feature (rhythmic 

density – a temporal aspect of music derived from pulses 

or beats, tempo, and meter). Transformative systems have 

the advantage over generative systems of an ‘in-built’ 

limiting rule-set, established by the seed material. With a 

transformative system, for example, there is no necessity 

to specify a large body of additional structural rules out-

side of those affected by the chosen feature. If such a 

system can be shown to achieve perceptual variation with 

a limited musical rule set, then in the future it should be 

adaptable to generative operation by the addition of ap-

propriate structural rules (that need not be based on musi-

cal feature selection or perceptual correlation). This 

would also facilitate work towards a larger system for 

affective algorithmic composition based on the selective 

manipulation of a broader range of musical features with 

underlying emotional correlations. 

2.1 Transformative algorithm 

The prototype system was developed using OpenMusic 

[11] and Common Lisp. The system functions offline and 

currently works with monophonic data only. The system 

has three phases; a learning phase, a transformation 

phase, and a generation phase. At the learning phase, the 

system takes a seed input and separates the musical struc-

ture into measures, deriving a two-order transition matrix 

of pitch and rhythm tree information (a hierarchical list 

representing rhythmic structures with probability values 

for the transitions between these structures). These values 

are stored as an array. A statistical analysis of rhythmic 

density is then carried out on the array by searching for 

the number of pulses in each measure via note onset and 

duration values. Each measure is then assigned a density 

value. At the transformation phase, the density value is 

used as an index in order to create new permutations from 

a Markov chain of pitch and rhythm tree information via 

the transition matrix. Permutations can be created solely 

from measures with high-density index values, low-

density index values, or a combination (assuming that 

there is enough variation in the original seed material). 

The permutations are used by the generation phase to 

allow the output to be saved as a MIDI format file for 

subsequent editing and playback. A signal flow of the 

prototype system is shown in Figure 1. If successful, the 

prototype system could be expanded by increasing the 

nth-order of the Markov chain to include more complex 

transitions, other musical features and higher level musi-

cal structures, once the relevant perceptual correlations 

have been determined.  

3. PERCEPTUAL EVALUATION  

The construction of a ‘perceptual space’ using Multidi-

mensional Scaling Analysis (MDS) from a set of listener 

evaluations has previously been shown to be a useful way 

to construct statistically meaningful dimensional models 

from listener perceptions of music [12]–[15]. Confidence 

in the model can be evaluated by statistical measures 

from the analysis in order to firstly determine the best-fit 

dimensionality for the model, and secondly to create a 

plot of the stimuli showing respective and relative simi-

larities in the model. With all MDS analysis, dimensional 

labels cannot be established by this kind of evaluation. 

This experiment therefore represents the first of a two-

stage validation of the prototype system – with the expec-

tation that, if successful, a second stage will include a 

verbal elicitation experiment to provide labels for the 

scaled data. Stimuli should be presented to the listeners in 

the second experiment in the order that they are arranged 

in the best-fit perceptual space from this experiment, with 

the aim being to provide meaningful emotional (or at 

least perceptual) labels for the movement in each of the 

resulting dimensions.  

3.1 Stimulus set generation/selection 

Stimuli for the experiment were created using the proto-

type system and 4 seed inputs from a study evaluating 

affective responses and neurophysical correlations in 

electroencephalogram (EEG) to western classical music 

[16]. These seed inputs were selected with the partial 

intention of adapting a BCMI system to the control of an 

affective algorithmic composition system using EEG in 

future. Thus, seed material which had already been per-

ceptually evaluated with EEG seemed to be a useful start-

ing point. The sources from [16] were Peter and the Wolf 

(Prokofiev), Brandenburg Concerto No. 5 (J.S. Bach), 

Four Seasons: Spring (Vivaldi), and Adagio for Strings 

(Barber). This seed material was edited to produce short 

excerpts of 30s in duration, in order to facilitate timely 

comparisons in the experiment itself, and reduce listener 

fatigue.  

   With MDS analysis, a minimum of 4 stimuli per di-

mension to be revealed in the final analysis is required. In 

order to allow for up to 4 dimensions of variation in the 

stimuli generated by the prototype system, 16 stimuli 

were prepared from the 4 seed inputs: 

• 1-4: original material, edited in duration only 

• 5-8: lower density rhythmic transformations ap-

plied to seed material 

• 9-12: higher density rhythmic transformations 

applied to seed material 

• 13-16: permutation only (Markov shuffling) 

with no rhythmic transformations 

   All stimulus material was limited to the same duration 

and condensed to monophonic playback via a piano tim-

bre (Type 0 MIDI file).  
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Figure 1. Signal flow of prototype system. Various permutations are possible, including the generation of a permuted set of 

measures using existing rhythm trees, a permuted set of measures with increased density (number of pulses extracted from oth-

er measures), and a permuted set of measures with decreased density.  
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Figure 2 shows an excerpt from the seed material before 

it has been separated by the system into measures. Figure 

3 shows a lower density excerpt generated from the same 

seed by the prototype system. The seed in this case was 

an excerpt from J.S. Bach’s Brandenburg Concerto No. 

5, which mainly consists of 1/16
th

 notes, with the excep-

tion of the material in the latter half of the sample. When 

the density transformation seeks to find material with 

lower density than the current measure, it uses the rhyth-

mic tree suggested by this lower density material as a 

template from which to create new permutations of the 

material in the ‘lower density’ output. The score itself is 

not optimised by the routine and could be edited by hand 

for ease of reading.  
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Figure 2. Excerpt of seed material, condensed to a 

monophonic piano arrangement of taken from J.S. 

Bach’s Brandenburg Concerto No. 5 
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Figure 3. ‘Lower density’ excerpt created by markov 

permutation of measures from seed material, with a 

lower density index used as the basis for selection of 

rhythm trees. Note the algorithm has made use of tri-

plets to emulate the pattern from the latter half of the 

seed material. 

3.2 Experiment procedure and listening panel 

Twenty two listeners participated in the experiment. Each 

participant had some experience of critical listening (all 

participants were in the third and final year of undergrad-

uate study in music technology). Ethical approval for the 

experiment was granted by the Humanities and Perform-

ing Arts research committee of Plymouth University. All 

participants were aged between 22-35 and received no 

financial incentive to take part in the experiment.  Two of 

the participants were female. The experiment was con-

ducted near-simultaneously (participants broadly began 

the experiment at the same time, in the same room) via 22 

iterations of a Max/MSP graphical user interface on desk-

top computers. The same brand and model of circumaural 

headphones was used by all participants. Participants 

were allowed to adjust volume levels according to their 

own preference during a familiarization exercise. The 

familiarization exercise also allowed listeners to hear the 

full range of stimuli in a non-linear fashion before under-

taking the main experiment.  

   In the main experiment, listeners were presented with 

136 randomly ordered pairs of stimuli, split over two tests 

of approximately 35 minutes in duration. Listeners were 

asked to compare and rate the similarity between each 

pair on a hidden 100-point scale with end-points labeled 

‘not at all similar’ and ‘the same’.  

4. RESULTS 

Listener responses were collated to produce a dissimilari-

ty matrix which was then subjected to an Individual Dif-

ferences Scaling (INDSCAL) MDS analysis. The statisti-

cal ‘measures-of-fit’ determined by the analysis (dimen-

sionality, RSQ or square of the correlation coefficient, 

and Kruskal stress) are shown in Table 1.  

 

Dimensionality RSQ RSQ im-

provement in 

next increase 

in dimension-

ality 

Stress 

(Kruskal 

stress 

formula 

1) 

1-D 0.99914 0.00067 0.574 

2-D 0.99981 0.00001 0.200 

3-D 0.99982 0.00014 0.109 

4-D 0.99996 n/a 0.072 

Table 1. Statistical ‘measures-of-fit’ determined by 

MDS INDSCAL analysis of listener responses. 

Measures in bold indicate a quality criterion has been 

met. The maximum possible RSQ improvement at 4-

Dimensions is given by 1-(4-D RSQ). 

 

As with any MDS analysis, increasing the number of 

dimensions will decrease the amount of stress on the so-

lution, hence determining the optimum solution is not 

simply a matter of looking for the lowest stress. Hence, 

the statistical measures in Table 1 were then examined to 

determine the ‘correct’ dimensionality (the number of 

dimensions which best represented the perceived varia-

tion in the stimulus set). Criteria which can be used as 

indicators of statistical quality in such analysis include 

RSQ greater than 0.95 [17], stress greater than 0.20 and 

optimally as low as 0.05 [18], and a negligible improve-

ment in RSQ at the next increase in dimensionality. Table 

1 shows that RSQ was greater than 0.95 in all dimension-

alities, suggesting that each gave a confident solution. 

The RSQ improvement at each additional dimension was 

also low, though the lowest improvement is found be-

tween the 2 and 3-Dimensional solutions. Stress was 

highest in the 1-Dimensional solution, but was below the 

threshold of <0.20 in all other solutions. Examination of a 

scree plot showing stress against dimensionality showed 

a significant knee (which can also be interpreted as an 

indicator of ‘correct’ dimensionality), at 2-Dimensions, 

shown in Figure 4. Together, these results strongly sug-

gested a 2-D solution. The spread in a Shepard diagram at 

2-Dimensions, as shown in Figure 5, was also examined, 

with a low spread in the data confirming a statistically 

good fit. 
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Figure 4. Scree plot showing a significant knee at 2-D, 

with stress at 0.200. 

 

 

Figure 5. Shepard diagram showing a low spread be-

tween similarities and distances in the 2-D solution with 

stress at 0.200. 

 

With a confident solution at 2-Dimensions, the perceptual 

space could then be plotted. 

5. DISCUSSION 

The permuted stimuli, as shown in Figure 6, are generally 

plotted closer to the respective seeds than the density 

transformations, suggesting that a permutation in overall 

musical structure has less perceptual significance to lis-

teners than a variation in rhythmic density. This is some-

what surprising as it suggests that even when the output is 

modified significantly by this process of random permu-

tation, the output retains more perceptual similarity to the 

seed material than the output generated by selectively and 

deliberately manipulating rhythmic density.  

   Two anomalies are present in the 2-Dimensional per-

ceptual space. The ‘Adagio’ group (from Adagio for 

Strings by Barber) appears to show the placing of the 

seed stimulus and the high density transformation in posi-

tions which do not follow the general trend. This might 

be explained by the significantly lower density found in 

the Adagio seed material – a slow, sparse piece of music 

in comparison to the other seed sources. Similarly, the 

‘Brand’ group (from Brandenburg Concerto No. 5 by J.S. 

Bach) also exhibits some unusual placing in the perceptu-

al space. In this group, although the permutation remains 

the closest stimulus to the original seed, the density trans-

formations are positioned atypically. The seed material 

for this group is considered to be the ‘most dense’ by the 

prototype system, with the largest number of onsets and 

shortest durations. This might explain why the ‘Brand’ 

group is presented approximately opposite the ‘Adagio’ 

group, and also why the listeners perceived the variation 

in this unexpected manner. However, if the angle of the 

configuration is rotated whilst still maintaining the direc-

tion of perceived density in other seed groups from left to 

right, but with low to high instead of high to low in di-

mension 2, the stimuli in question then appear to be or-

dered BrandLD, BrandP, BrandE, and BrandHD, as 

would be expected according to the general trends ob-

served above.  

 

 

Figure 6. Perceptual space in 2-Dimensions after MDS 

INDSCAL analysis. Movement can be seen from low to 

high density stimuli. Coloured annotations show group-

ing of stimuli based on seed material. Stimuli appended 

-E are original edited seed excerpts. Stimuli appended -

P are permutations with no intended change in rhythmic 

density. Stimuli appended -LD are the low density 

transformations, and stimuli appended -HD are the high 

density transformations.  

 

    The perceptual space shows that transformed stimuli 

are loosely grouped near to their seed material, with a 

general trend that low density transformations are found 

in the upper left of their seed group, and high density 

transformations in the lower right of their seed group. 

Overall there is a tendency for an increase in density to 

be plotted across the perceptual space from the upper left 

of the space to the lower right. This spacing bears a simi-

larity to some existing work using the circumplex model 

of affect [19], a 2-Dimensional emotional space with di-

mensions based on arousal and valence, which has been 

adapted to music and to affectively-charged algorithmic 

composition in some systems [20], [21]. Whilst such ob-
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servations can only be casually drawn, Barber’s adagio 

seems to be a ‘sadder’, more somber piece, whilst the 

Brandenburg concerto is faster, more lively, higher ener-

gy and subjectively ‘happier’, found at the opposite end 

of the 2-D space. This strongly suggests that isolated mu-

sical feature manipulation is compatible with this method 

of parameterizing affect in such systems, and that in the 

future, a larger system, incorporating several such isolat-

ed features as part of an affective control system, should 

be possible. A larger system would have the advantage of 

being able to generate affectively charged music automat-

ically, and reactively, responding to the user’s emotional 

state.   However, as MDS analysis cannot reveal the 

names of dimensions given by this analysis, a subsidiary 

verbal elicitation experiment should now be undertaken 

before rhythmic density could be included in such a sys-

tem. Furthermore, the degree of control over the percep-

tual unidimensionality in the correlations noted above is 

to some extent dependent on the initial density of the seed 

material, which was itself limited to a small range from 

the western classical repertoire. 

6. CONCLUSIONS 

In order to determine whether isolated musical features 

could be used in a larger affective algorithmic composi-

tion system, a prototype for generating new musical 

structures from seed material with varying levels of 

rhythmic density was developed and evaluated by means 

of a pairwise dissimilarity experiment.  

   The pairwise dissimilarity experiment concluded that 

listener responses could be plotted to a 2-Dimensional 

solution with reasonable statistical confidence. A subse-

quent verbal elicitation experiment could now be used to 

label these dimensions. Within the 2-Dimensional space, 

randomly permuted stimuli were found to be perceptually 

more similar to the seed material than stimuli created 

with deliberate variation in rhythmic density. This is a 

surprising finding and has implications for the incorpora-

tion of a larger range of isolated musical features in an 

affective algorithmic composition system.  

   The 2-Dimensional MDS scaling also showed a marked 

similarity to the 2-Dimensional model of affect which 

some algorithmic composition systems have adopted in 

order to automatically generate emotionally charged mu-

sic. This further suggests that additional isolated feature 

manipulation could contribute to a larger system for af-

fectively charged algorithmic composition in the future.  
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