
Mostly-Strongly-Timed Programming in LC

Hiroki NISHINO Ryohei NAKATSU

NUS Graduate School for

Integrative Sciences & Engineering,

National University of Singapore
g0901876@nus.edu.sg

 Interactive and

Digital Media Institute,

National University of Singapore
idmnr@nus.edu.sg

ABSTRACT

Due to its synchronous behaviour, a strongly-timed pro-

gram can suffer from the temporary suspension of real-

time DSP in the presence of a time-consuming task. In

this paper, we propose mostly-strongly-timed program-

ming, which extends strongly-timed programming with

the explicit switch between synchronous context and

asynchronous context. If a thread is in asynchronous con-

text, the underlying scheduler is allowed to preempt it

without the explicit advance of logical time. Time-

consuming tasks can be executed asynchronously, with-

out causing the temporary suspension of real-time DSP.

We also discuss how the concept is integrated in LC, a

new computer music programming language we proto-

typed, together with the discussion on implementation

issues.

1. INTRODUCTION

The issue of timing precision is a traditional topic in

computer music. Even today, when the advance of com-

puter technology has made significant improvements in

both computational speed and communication bandwidth

with the external hardware, timing precision continues to

be a topic of significant interest. When performing mi-

crosound synthesis techniques [16], sample-rate accuracy

for scheduling microsounds is a crucial factor in render-

ing the output as theoretically expected.

The strongly-timed programming concept that Wang et

al. proposed in the ChucK audio programming language

[21] is interesting in that it contextualizes such a problem

as an issue with the programming language design. It

adopts the concept of synchronous programming [10] to

an imperative programming language for interactive sys-

tems, by letting a user program explicitly control the ad-

vance of logical time. In this manner, even sample-rate

accurate precise timing behaviour can be realized.

However, due to its synchronous behaviour, a strongly-

timed program can suffer from the temporary suspension

of real-time DSP in the presence of a time-consuming

task. Such a problem can occur in any other computer

music languages and systems, which take a similar syn-

chronous approach in the design.

In this paper, we propose a new programming concept,

mostly-strongly-timed programming
1

, which extends

strongly-timed programming with explicit switching be-

tween synchronous context and asynchronous context.

The underlying scheduler can suspend threads in asyn-

chronous context at an arbitrary time, even without the

explicit advance of logical time; thus, the temporary sus-

pension of real-time DSP can be avoided by enclosing the

time-consuming part of a task in asynchronous context.

We adopted this concept into LC [12, 13], a new comput-

er music programming language we prototyped. In the

following sections, we briefly review the related works

and describe the mostly-strongly-timed programming

concept with code examples in LC, followed by discus-

sions on the concept, together with implementation issues.

2. RELATED WORKS

2.1 The Earlier Live Computer Music Systems

For non real-time computer music languages, the issue of

timing precision was not a concern in the early days of

computer music, as even the sample-rate accuracy was

easily achieved simply by setting the audio-rate and con-

trol-rate [7, p.468] to the same settings. However, pre-

cise timing behaviour in a computer music system be-

came an issue of significant interest, soon after the emer-

gence of live computer music. In the era when a comput-

er music system still consisted of a computer and its ex-

ternal synthesizer hardware, the concerns were concen-

trated around how to deal with the limitations that comes

from slow CPUs and the low bandwidth of the hardware

interface of the time.

FORMULA by Anderson and Kuiliva [1, 2] is one of the

most notable works in that it represents efforts made in

this era. FORMULA uses the time-sliced approach in-

spired by discrete-event simulation [4], and the tasks in

FORMULA are performed in system-internal logical

time. By performing tasks in logical-time, the events can

be given the same logical timestamps, as if they were

generated or scheduled at the same time, regardless of the

actual timing in real time when they are generated or

scheduled. Together with the mechanism to buffer the

output events, FORMULA achieved desirable timing

precision for live computer music in this era.

1
 A very early discussion on mostly-strongly-timed programming is

presented in [14].

Copyright: © 2014 Hiroki NISHINO et al. This is an open-access arti-

cle dis- tributed under the terms of the Creative Commons Attribution

License 3.0 Unported, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source

are credited.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1581 -

2.2 Stand-Alone Live Computer Music Systems

After stand-alone real-time sound synthesis is made pos-

sible on a personal computer, the issue of timing preci-

sion was again raised. As computer music systems must

process the compositional algorithms and real-time DSP

simultaneously, the software design for such a computer

music system had to be investigated. The popularization

of microsound synthesis techniques also led to the de-

mand for more precise timing behaviour.

2.2.1 The separation between audio computation thread

and compositional algorithms thread(s)

One of the approaches taken in the design of computer

music systems is to perform the real-time sound synthesis

in a separate process (or a separate thread) with higher

priority and perform compositional algorithms in other

processes (or threads). This approach is still frequently

seen in many computer languages. For example, Super-

Colllider [22] consists of two processes, scserver (the

sound synthesis server) and sclang (the interpreter for its

programming languages). Impromptu [19] also performs

sound synthesis in a different thread than the composi-

tional algorithms. The sound synthesis software frame-

works and libraries are also frequently designed with the

same approach. For example, both Jsyn for Java [8] and

CsoundXO for python [11] are designed in this manner.

This approach can avoid the suspension of real-time

sound synthesis, as all the compositional algorithms, in-

cluding a time-consuming compositional task, are per-

formed in a different thread/process. Instead, this makes

it significantly harder to synchronize sound synthesis

with the compositional algorithms. Generally speaking,

the synchronization between threads and processes in

today’s operating systems are not so fine-grained to real-

ize sample-rate accurate timing precision in such a soft-

ware design.

2.2.2 The synchronous approach

To achieve better timing precision, many computer music

languages and systems take the synchronous approach,

which is based on the ideal synchronous hypothesis. In

the ideal synchronous hypothesis, “all the computations

are assumed to take zero time (that is, all temporal scopes

are executed instantaneously)” and “during implementa-

tion, the ideal synchronous hypothesis is interpreted to

imply the system must execute fast enough for the effect

of the synchronous hypothesis to hold” [9, p.360].

In practice, when designing a real-time computer music

system, the ideal synchronous hypothesis is interpreted to

imply that real-time DSP must be blocked until the sys-

tem finishes processing all the scheduled tasks and the

system must execute all the tasks before the deadline for

the next DSP cycle. To achieve such behaviour, the exe-

cution of the compositional algorithms and the audio

computation are normally interleaved in one thread.

While many widely-used languages are implemented

with this synchronous approach
2
, LuaAV [20] provides

an interesting design exemplar for textual computer mu-

sic languages, in that it utilizes collaborative (or non-

preemptive) multi-tasking by coroutines to achieve syn-

chronous behaviour. Figure 1 describes a simple LuaAV

example [20]. In LuaAV, the user code is executed as a

coroutine within the software framework. By calling the

wait function
3
 (as seen on line 06), the current coroutine

explicitly yields so that the underlying sound synthesis

framework can perform the audio computation.

After the given duration has passed, it resumes the

coroutine. The go function calls are made to execute new

coroutines on line 10 and line 12.

As coroutines can yield and resume much faster than na-

tive threads, it is easy to realize the fine-grained synchro-

nization and synchronous behaviour between the compo-

sitional algorithms written as coroutines and sound syn-

thesis, when performing both in the same audio computa-

tion thread.

2.2.3 Strongly-timed programming

The strongly-timed programming concept proposed by

Wang et al. in the ChucK audio programming language

[21] is also of significant interest in that it clearly puts

this issue of precise timing in the context of the pro-

gramming language concept. While most synchronous

programming languages are designed for reactive sys-

tems
4
, ChucK targets interactive systems

5
, with an exclu-

sive focus on audio programming. As a variation of syn-

chronous programming, ChucK integrates the explicit

advance of logical synchronous time within an imperative

programming language.

Figure 2 illustrates a simple strongly-timed program in

ChucK [21, p.43]. As seen on line 10, logical time is ex-

plicitly advanced by a user program. The audio output is

computed only when logical time is advanced
6
; if there

exists any active thread that is still being executed, the

audio computation is blocked.

2
 For instance, “audio and message processing are interleaved in Pd”

[15].
3
 The wait function can also wait for a certain event to occur.

4
 Reactive systems are “computer systems that continuously react to

their environment at a speed determined by this environment”[10].
5
 Interactive systems are computer systems that “continuously interact

with their environment, but at their own rate” [10].
6
 Similar to LuaAV, a ChucK program can wait for a certain event; the

thread of execution can be suspended and logical-time can be advanced

until the occurrence of the event.

01: -- define a function to print a message
02: -- repeatedly, every 1 second.
03: function printer(message)
04: while true do

05: print(message)
06: wait(1) -- wait 1 second
07: end
08: end
09: -- start ticking:

10: go(printer “tick”)
11: -- start tocking after 0.5second:
12: go(0.5, printer “tock”)

Figure 1. A simple example of a LuaAV program [20].

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1582 -

While there may be a certain degree of similarity between

the Figure 1 LuaAV example and the Figure 2 ChucK

example, it should be emphasized that strongly-timed

programming itself is not directly associated to any par-

ticular implementation strategy; while the concept may

be implemented by translating a strongly-timed program

to another program that utilizes coroutines, which would

look similar to the LuaAV example, it is also possible to

implement a virtual machine that executes the bytecode

generated by its own compiler as in ChucK. There can be

various implementations of a strongly-timed program-

ming language, as it is purely a programming concept.

3. MOSTLY-STRONGLY-TIMED PRO-

GRAMMING

3.1 Extending the strongly-timed programming con-

cept with asynchronous/preemptive behaviour

While the synchronous approach can realize fine-grained

timing precision, due to the underlying ideal synchronous

hypothesis, a time-consuming task can temporarily sus-

pend real-time DSP, since audio computation is blocked

until the task is finished. Such a situation is clearly not

desirable in live computer music.

The proposition of strongly-timed programming implies

that this problem can be considered as a problem of the

programming concept applied to the language, not just as

an implementation issue. One of the possible solutions

suggested from this perspective is to extend the strongly-

timed programming concept with asynchronous behav-

iour.

3.2 The mostly-strongly-timed programming concept

Based on the idea described above, we propose mostly-

strongly-timed programming, which extends strongly-

timed programming with the explicit switch between the

synchronous/non-preemptive context and the asynchro-

nous/preemptive context. In a mostly-strongly-timed pro-

gram, a thread in the former context is executed synchro-

nously as it is in a strongly-timed program and audio

computation is blocked until the thread explicitly advanc-

es logical time or waits for an event. On the contrary, in

the latter context, the underlying scheduler is allowed to

suspend and resume a thread at any arbitrary time if nec-

essary.

In LC, two statements, sync and async, are provided for

explicit context switching. These statements switch the

current context to the synchronous context and to the

asynchronous/preemptive context respectively. Figure 3

describes an example of mostly-strongly-timed pro-

gramming in LC. As shown, the sync and async state-

ments can be nested as desired. As seen in the comments,

the time-consuming part of a thread can be preempted

when necessary, just by enclosing it within an async

block; thus, temporary suspension of real-time DSP can

be avoided.

01: //create/play a sine wave oscillator patch to

02: //make the temporary suspension of DSP audible.

03: var p = patch {

04: Sin~(440) => DAC~();

05: };

06: p->start();

07:

08: //loading 16 large sound files at once from the

09: //hard drive. This can consume lots of time and

10: //temporarily suspend real-time DSP.

11: for (var i = 0; i < 16; i+= 1){

12: //load sample0.wav- sample15.wav

13: LoadSndFile(i, Ĉsampleĉ .. i .. Ĉ.wavĉ);

14: }

15:

16: //this infinite loop suspends the DSP forever;

17: //it doesnćt advance logical time at all,

18: //while the thread is in theĆsyncćcontext.

19: /*

20: while(true){

21: }

22: */

23:

24: //--

25: // mostly-strongly-timed programming

26: //--

27: }

28: //an array with 16 elements.

29: var wsarray = new Array(16);

30:

31: //using anĆasyncć statement to switch to the

32: //asynchronous/preemptive context, so that the

33: //task can be preempted by the scheduler.

34: async {

35: //the below doesnćt suspend real-time DSP,

36: //as the thread can be preempted this time.

37: for (var i = 0; i < 16; i+= 1){

38: //load sample0.wav- sample15.wav

39: LoadSndFile(i, Ĉsampleĉ .. i .. Ĉ.wavĉ);

40: }

41:

42: //then switch back to theĆsyncćcontext

43: sync {

44: //now in the non-prepemtitve context.

45: //the code is executed with the sample-rate

46: //accurate timing behavior.

47: for (var i = 0; i < 10; i+= 1){

48: //randomly change the sine wave frequency.

49: p.s.freq = Rand(1, 10) * 2220;

50: now += 1::second;

51: }

52: //now switch to the Ćasyncć context again.

53: async {

54: //extract wavesets from the buffers.

55: //the analysis can take time if the sound

56: //data is large. Yet, the below task wonćt

57: //suspend real-time DSP as the thread

58: //is now in the async context.

59: for (var i = 0; i < 10; i+= 1){

60: wsarray[i] = ExtractWavesets(i);

61: }

62: } //the end of the async block (lines 53-62)

63: } //the end of the sync block (lines 43-63)

64:

65: //now we are in the async context (lines 34-)

66: //unlike on line 20-21, the below loop does not

67: //suspend real-time DSP, since the thread

68: //is currently in the async context.

69: while(true){

70: }

71: }//the end of the async block (lines 34-71)

Figure 3. A mostly-strongly-timed programming example in LC.

01: // synthesis patch

02: SinOsc foo => dac;

03:

04: // infinite time loop

05: while(true)

06: {

07: // randomly choose a frequency

08: Std.rand2f(30, 1000) => foo.freq;

09: // advance time

10: 100::ms => now;

11: }

Figure 2. A simple strongly-timed program in ChucK [21, p.43].

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1583 -

4. DISCUSSION

4.1 Extending strongly-timed programming with the

asynchronous/preemptive behaviour

As discussed in Section 2, in a computer music system

that performs real-time DSP in a separate thread, it is

difficult to synchronize the timing between compositional

algorithms and real-time sound synthesis. The use of the

synchronous approach and logical time may compensate

for such a loss of the timing precision to a considerable

degree. Depending on how the runtime environment (e.g.,

virtual machine or interpreter) schedules internal tasks,

the predictability and repeatability can be also recovered

at least at the logical time level. For instance, the schedul-

ing strategy of the ChucK virtual machine is made highly

deterministic and predictable [21].

However, as repeatedly emphasized, due to the underly-

ing ideal synchronous hypothesis, a computer music sys-

tem built upon the synchronous approach can suffer from

the temporary suspension of real-time DSP in the pres-

ence of a time-consuming task. As both real-time DSP

and compositional algorithms are performed within the

same thread, if any task blocks audio computation for a

long period, the computer music system may miss the

deadline for sound output.

There are various kinds of tasks that can be time-

consuming in computer music. For instance, it would

consume a significant amount of time to analyse large

sound data. It may be argued that the temporary suspen-

sion of real-time DSP can be avoided by dividing a time-

consuming task into a number of sub-tasks, interleaved

by the explicit advance of logical time.

Contrary to expectation, this programming pattern is not

always realizable. For example, assume that a user wants

to load a large sound file from the disk. This task can

consume a significant amount of time, as it involves disk

access. A user may divide this task into the number of

disk accesses to load the sound data a little at a time. Yet,

the duration of the I/O block caused by the disk access is

unpredictable; there may be other processes accessing the

same disk simultaneously, or the disk itself may not be

located on the same computer, but on the local area net-

work. In both cases, each sub-task can consume more

time than expected.

One of the perspectives suggested by the strongly-timed

programming concept is that the issue of timing behav-

iour can be viewed as a problem with the programming

concept applied to the language. This perspective allows

further investigation as to wether there can be a pro-

gramming concept that suits as a solution, temporarily

putting the software framework design issues aside,

which are more related to implementation.

Based on this perspective, we proposed the mostly-

strongly-timed programming concept. As our view of this

problem is that the temporary suspension of real-time

DSP is rooted in the underlying ideal synchronous hy-

pothesis, our approach is to extend the strongly-timed

programming concept by utilizing asynchronous behav-

iour. By such an extension, mostly-strongly-timed pro-

gramming intends to avoid temporary suspension of real-

time DSP by the explicit switch to asynchro-

nous/preemptive context when performing a time-

consuming task.

Previous works already exist that extend synchronous

programming languages with asynchronous behaviour.

The target application domain and the background moti-

vation of the mostly-strongly-timed programming con-

cept greatly differ from these works. Berry et al. extend-

ed Esterel [5], a synchronous programming language for

reactive systems for communicating reactive processes,

“where a set of individual reactive synchronous processes

is linked by asynchronous communication channels” in

[6]. Baldamus and Schneider also discussed the extension

of Esterel and PURR [17] by asynchronous concurrency

and non-determinism to describe asynchronous systems

and to generate more optimized code in [3].

Thus, these previous works target reactive systems. Their

motivations are in communicative reactive processes or

in the optimization of the generated code, whereas most-

ly-strongly-timed programming targets interactive sys-

tems, with a significant focus on computer music applica-

tions. The motivation here is achieving precise timing

behaviour while avoiding the suspending of audio com-

putation; both the target application domain and the

background motivation of mostly-strongly-timed pro-

gramming significantly differ.

4.2 The implementation issues

While strongly-timed programs in ChucK are executed as

software threads within ChucK’s own virtual machine, it

is not difficult to translate it to the programs that utilize

coroutines in another language. However, such a simple

conversion is not possible for a mostly-strongly-timed

program, because the underlying scheduler must be al-

lowed to preempt threads in asynchronous context, at an

arbitrary time.

A user may consider it is possible to check if the underly-

ing scheduler is requesting a preemption, by inserting

synchronization points into the translated program
7
. As

the request status can be actively checked at the synchro-

nization points and a coroutine can yield when the re-

quest is made, it seems possible to mimic the preemption.

However, this strategy does not work well for the tasks

that involve the I/O block as described. For instance, if a

native function call is made to load a large file, this single

native function call may consume a significant amount of

time for disk access. As the compiler or virtual machine

7
 The strategy of inserting synchronization points into the generated

code by a compiler can be also often be seen when implementing a

garbage collector. “At such a synchronization point, a test of a global

variable indicates if a thread switch is required, and some code is exe-

cuted if this is the case” [18, p.43], for instance, the code to scan the

root objects at the beginning of a garbage collection phase.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1584 -

cannot simply insert a synchronization point inside a na-

tive function, as they are able to into a translated code or

into a bytecode, the underlying scheduler cannot perform

the preemption until the native function call is over.

Moreover, the sync and async statements seem irreplace-

able with corresponding API functions and may require

handling at the virtual machine level, when considering

non-local exits, (e.g., execution-time constraints or ex-

ception-handling). Figure 4 describes a simple example

that involves an execution-time constraint in LC. The

within-timeout statement can be used to give an execution

time constraint in LC. When the execution-time con-

straint given by the within statement is violated, the code

immediately jumps to the timeout block; otherwise the

timeout block is simply skipped.

In Figure 4, the code jumps when exactly five seconds

have passed from line 05 to line 09. On line 09, the thread

already exited async context, and sync context should be

recovered. Hence, there should be no advance of logical

time when the code reaches to the timeout block; line 09

should be executed right at the timing, when the execu-

tion-time constraint is violated (exactly five seconds after

line 02 is executed).

Assume that a mostly-strongly-timed program is translat-

ed to another language, the runtime environment of

which is capable of performing preemption in asynchro-

nous context, and assume that the API calls, such as

switchToSyncContext, switchToAscynContext and setCur-

rentContext, can perform explicit switching and be used

for recovery of the given context, respectively. Given

such an assumption, it could be argued that the Figure 4

example may be translated into a program similar to the

Figure 5 example.

However, the code does not work as expected, and these

two examples behave differently in a certain situations. In

the original Figure 4 example, when the code should

jump to line 08, the current context should be recovered,

since in synchronous/non-preemptive context, logical

time should not be advanced, as described earlier. Yet, in

the Figure 5 example, the code is still in the asynchro-

nous context until the setCurrentContext API call is made

on line 24 to recover the sync context. The underlying

scheduler may preempt right after the code jumps to the

time out block, before line 24 is executed, so that it can

avoid allowing the virtual machine to miss the dead line

for audio computation. As a result, the preemption would

cause the implicit advance of logical time, as the audio

computation is performed. Such behaviour clearly differs

from the Figure 4 example.

Thus, unlike a purely strongly-timed program, a mostly-

strongly-timed program is not well translated into other

programs that utilize coroutines. It seems to be desirable

to be executed a mostly-strongly-timed program in a

runtime environment spefically designed for mostly-

strongly-timed programing.

Considering such issues, the current proof-of-concept

prototype of LC provides its own bytecode compiler and

virtual machine. The virtual machine executes the soft-

ware threads, which run the user programs, and audio

computation is performed within the same native thread

inside the virtual machine. Context switching and restor-

ing are managed by the virtual machine, together with

other features such as execution-time constraints and ex-

ception handling. Some built-in native functions that may

cause I/O blocking, such as file access and console out-

put, are implemented so that they can be performed in

separate threads when called in asynchronous context so

that they do not block audio computation.

While there can be various implementations of the

runtime environment for mostly-strongly-timed pro-

gramming, the current prototype of LC can execute most-

ly-strongly-timed programs as expected from the concept.

The prototype proved that the concept is fairly realizable,

without damaging the precise timing behaviour of the

original strongly-timed programming concept and the

capability of real-time DSP.

5. CONCLUSION

In this paper, we proposed a novel programming concept,

mostly-strongly-timed programming, which extends

01: sync {

02: within(5::second){

03: async {

04: //a function call that consumes 10 sec.

05: funcConsume10sec();

06: }

07: }

08: timeout {

09: println(Ĉtimeout!ĉ);

10: }

11: }

Figure 4. A simple execution-time constraint example in LC.

01: var prevCtx1;

02: {

03: //save the current context to recover it later.

04: prevCtx1 = GetCurrentContext();

05: //switch to the sync context.

06: switchToSyncContext();

07: {

08: var prevCtx2;

09: within(5::second){

10: //save the current context (sync)

11: prevCtx2 = GetCurrentContext();

12: switchToAsyncContext();

13:

14: //a function call that consumes 10 sec.

15: funcConsume10sec();

16:

17: //recover the previous context (sync)

18: setCurrentContext(prevCtx2);

19: }

20: timeout {

21: //before the below function call,

22: //the underlying scheduler may preempt!!

23: //recover the previous context (sync)

24: setCurrentContext(prevCtx2);

25: println(Ĉtimeout!ĉ);

26: }

27: }

28: }

29: //recover the original context

30: setCurrentContext(prevCtx1);

Figure 5. An example of performing context switching by the
corresponding API function calls.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1585 -

strongly-timed programming by the explicit switching

between synchronous context and asynchronous context

and its integration into the language design of LC, a new

computer music programming language we prototyped.

Since the underlying scheduler can perform the preemp-

tion of the threads in asynchronous context, a mostly-

strongly-timed program can avoid temporary suspension

of real-time DSP in the presence of a time-consuming

tasks as seen in strongly-timed programs, by enclosing

the time-consuming tasks within an asynchronous con-

text.

We also described why such an extension in the behav-

iour makes a mostly-strongly-timed program practically

untranslatable to another program that utilizes coroutines

unlike in the case of a strongly-timed program, together

with the issues to consider in the implementation of the

runtime environment.

6. FUTURE WORK

While the current proof-of-concept prototype proved that

the mostly-strongly-timed programming concept is real-

izable, the programming concept itself is still in its infan-

cy and leaves room for improvement. Further discussion

on the concept and implementation is desirable.

7. REFERENCES

[1] D. P. Anderson and R. Kuivila, “A system for

computer music performance,” ACM Transactions

on Computer Systems (TOCS), Vol. 8 (1), 1990,

pp.56-82.

[2] D. P. Anderson and R. Kuivila, “Formula: A

programming language for expressive computer

music,” Computer, Vol. 24(7), 1991, pp.12-21.

[3] M. Baldamus and K. Schneider. “Extending Esterel

by asynchronous concurrency”, Technical Report,

GI/GMM/ITG Fachtagung zum Entwurf Integrierter

Schaltungen, 1993.

[4] J. Banks and J. S. Carson. Discrete-event system

simulation. Pearson Education India, 1984.

[5] G. Berry et al., “The Esterel synchronous

programming language: Design, semantics,

implementation,” Science of computer

programming, Vol 19 (2), 1992, pp.87-152.

[6] G. Berry et al., “Communicating reactive

processes,” In Proceedings of the 20
th

 ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, 1993, pp.85-98

[7] R. Boulanger and V. Lazzarini, The Audio

Programming Book, The MIT Press, 2010.

[8] P. Burk. “Jsyn – a real-time synthesis api for Java,”

In Proceedings of the 1998 International Computer

Music Conference, 1988.

[9] A. Burns and A. J. Wellings. Real-Time Systems and

Programming Languages: Ada 95, Real Time Java

and Real Time Posix. Addison Wesley. 2001

[10] N. Halbwachs. Synchronous Programming of

Reactive Systems. Springer-Verlag. 2010.

[11] V. Lazzarini et al., “A toolkit for music and audio

activities on the xo computer”, In Proceedings of the

2008 International Computer Music Conference,

2008

[12] H. Nishino et al., “LC: A Strongly-timed Prototype-

based Programming Langauge for Computer Music,”

in Proc. ICMC, 2013

[13] H. Nishino et al., “LC: A New Computer Music

Programming Language with Three Core Features,”

submitted to Proc. ICMC-SMC, 2014

[14] H. Nishino. “Mostly-strongly-timed programming,”

In Proc. ACM SPLASH, 2012.

[15] M. Pukette, Pd Documentation, on-line at

http://www.crca.ucsd.edu/~msp/Pd_documentation,

2005. Accessed on Apr 12
th

, 2014

[16] C. Roads. Microsound. The MIT Press. 2004

[17] D. Schmid et al., “Formale Verifikation

eingebetteter Systeme,” Informationstechnik und

Technische Informatik, Vol.2, 1999, pp.12-16

[18] F. Siebert, Hard Real-time Garbage Collection In

Modern Object-Oriented Programming Languages.

BoD-Books on Demand, 2002

[19] A. Sorensen et al., “Programming with time: Cyber-

physical programming with Impromptu”, In Proc.

ACM SPLASH/OOPLSA, 2010

[20] G. Wakefield et al., “LuaAV: Extensibility and

heterogeneity for audiovisual computing,” in Proc.

Linux Audio Conference. 2010.

[21] G. Wang, The chuck audio programming language.

A strongly-timed and on-the-fly environ/mentality.

Ph.D thesis, Princeton University, 2008.

[22] S. Wilson et al, The SuperCollider Book. The MIT

Press, 2011.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1586 -

