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ABSTRACT 

This paper gives a brief overview of the three core fea-

tures of LC, a new computer music programming lan-

guage we prototyped: (1) prototype-based programming 

at both levels of compositional algorithms and sound syn-

thesis, (2) the mostly-strongly-timed programming con-

cept and other features with respect to time, and (3) the 

integration of objects and functions that can directly rep-

resent microsounds and the related manipulations for 

microsound synthesis. As these features correspond to 

issues in computer music language design raised by re-

cent creative practices, such a language design can bene-

fit both the research on computer music language design 

and the creative practices of our time, as a design exem-

plar. 

1. INTRODUCTION 

While the advance of computer technology and pro-

gramming language research has largely influenced the 

evolution of computer music languages, issues found in 

creative practices have also motivated the development of 

new computer music languages. For instance, “the need 

for a simple, powerful language in which to describe a 

complex sequence of sound” in the early days of comput-

er music [13, p.34] led to the invention of the unit-

generator concept, which still serves as a core abstraction 

for digital sound synthesis. In another example, Max and 

some other languages for IRCAM’s Music Workstation 

were designed with the motivation that “musicians with 

only a user’s knowledge of computers could invent and 

experiment with their own techniques for synthesis and 

control” [18]. 

 

Therefore, the problems revealed by the creative practices 

can also be regarded as significant design opportunities 

for a new computer music programming language.  In the 

design and development of LC, a new computer music 

programming language, we also took the issues raised by 

the creative practices of our time into account. While LC 

has been partly described in our previous works [14, 15, 

16, 17], significant extensions have been made to its orig-

inal language specification in the design process. 

  

In this paper, we first address three issues in computer 

music language design, which were raised by the creative 

practices of our time: (a) the insufficient support for dy-

namic modification of a computer music program, (b) the 

insufficient support for precise timing behavior and other 

features with respect to time, and (c) the difficulty in mi-

crosound synthesis programming.  

 

In the following sections, we discuss these problems and 

then how they correspond to the three core features of 

LC: (1) prototype-based programming, (2) mostly-

strongly-timed programing, and (3) the integration of the 

objects and functions for microsound synthesis within its 

sound synthesis framework, together with related works 

and a brief discussion. 

 

Such a discussion regarding the language design and the 

issues found with the creative practices can benefit fur-

ther research on computer music languages and the inves-

tigation on how creative exploration by computer musi-

cians should be supported by computer music languages. 

2. THREE ISSUES IN TODAY’S COM-

PUTER MUSIC LANGUAGE DESIGN 

2.1 The insufficient support for dynamic modification 

of a computer music program 

Recent computer music practices suggest a significant 

need for more dynamic computer music programming 

languages today. For example, live-coding performances 

[6], involve the creation and modification of computer 

music programs on-the-fly on stage, even while the pro-

grams are being executed. In addition, dynamic-patching 

as seen in reacTable [12] involves the dynamic modifica-

tion of a sound synthesis graph.  

 

However, many computer music languages still exhibit 

certain usability difficulties when performing dynamic 

modification at least at one of these levels. Such difficul-

ties can obstruct further creative musical explorations. As 

the degree of support for the dynamism in a programming 

environment depends not just on the design of a library or 

a framework utilized, but also on the basic language de-

sign, which can be substantially limiting. It is highly de-

sirable to consider such an issue as one of the important 

criteria from the earliest stage of the language design 

process. 
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2.2 The insufficient support for precise timing behav-

ior and other features with respect to time 

The precise timing behavior of a computer music system 

has become a traditional issue. Even in earlier decades 

when a real-time interactive computer music system con-

sisted of a computer and external synthesizer hardware, 

the slow processing speed of CPUs and the low band-

width of hardware interfaces have motivated the research 

on the improvement of the timing precision required for 

better musical presentation of live computer music com-

positions
1
. Today, even sample-rate accurate timing be-

havior is considered desirable. For instance, to render the 

output of a microsound synthesis technique as theoreti-

cally expected, sample-rate accurate timing precision in 

scheduling microsounds is essential.  

 

While some recent computer music languages provide 

sample-rate accurate timing behavior as in ChucK [22], 

LuaAV [21], their synchronous behavior can result in the 

temporary suspension of real-time DSP in the presence of 

a time-consuming task, as it blocks the audio computa-

tion until all the scheduled tasks are finished. Moreover, 

the features with respect to time that were seen in the 

computer music languages of earlier eras, such as timing 

constraints and time-fault tolerance, seem to not be con-

sidered in many recent computer music languages; even 

Impromptu [20], which is a good exception that is clearly 

designed with such considerations, still lacks some desir-

able features with respect to time. For example, Im-

promptu cannot handle the violation of execution-time 

constraints.  

 

As above, the support for precise timing behavior and 

other features with respect to time is still an issue of sig-

nificance in today’s computer music language design. 

2.3 The difficulty in microsound synthesis program-

ming  

Broadly speaking, usability difficulties can be caused 

when the abstractions applied to the software are incom-

patible with what a user thinks. As “the co-evolving na-

ture of technology adoption results in new concepts 

emerging through use of technology”, such a gap caused 

between the existing abstractions and emerging concepts 

“may introduce usability difficulties”, which did not exist 

previously [3]. 

This view may correspond to the unit-generator concept 

and microsound synthesis, as the latter was brought into 

practice much later than the establishment of the former; 

one of the earliest well-known experiments in mi-

crosound synthesis is one by Roads in 1974 [19, p.302], 

long after the invention of unit-generator concepts in 

1960 [7, P.26]. 

 

Indeed, several researchers have already discussed the 

gap between the traditional unit-generator concept and 

                                                             
1
 FORMULA well represents the research on timing precision and the 

time-related features in its era, even though its target application domain 

was still a hybrid computer music system that consists of a computer 

and the external MIDI synthesizer(s) [1]. 

microsound synthesis. Bencina discusses such an issue in 

the object-oriented software design for a software granu-

lar synthesizer in [2]. In another example, the design of 

Brandt’s Chronic computer music language is also highly 

motivated by problems exhibited in the traditional unit-

generator concept when describing microsound synthesis 

techniques [4]. While its application domain focuses only 

on frequency-domain signal processing and analysis, 

Wang et al. describe a similar issue when discussing 

ChucK’s unit-analyzer concept [23].  

 

However, The former two works are not very adaptable 

to the design of a real-time interactive computer music 

language. The work by Bencina targets the stand-alone 

software rather than the language design. Brandt’s Chron-

ic is a non real-time computer music language, the design 

of which still leaves ‘an open problem’ for application to 

real time computer music languages because of its acaus-

al behavior
2
 [4, p.77]. The target domain of ChucK’s 

unit-analyzer concept is only signal processing and anal-

ysis in the frequency-domain, and it lacks the generality 

to apply to various microsound synthesis techniques; The 

substantial necessity for further research on more appro-

priate abstractions that can tersely describe microsound 

synthesis techniques still remains. 

3. THREE CORE FEATURES OF LC 

3.1 Prototype-based programming at both levels of 

compositional algorithms and sound synthesis 

In prototype-based languages, “each object defines its 

own behavior and has a shape of its own”, whereas “each 

object is an instance of a specific class” in class-based 

languages [11, p.151]. Unlike class-based languages, 

slots (or fields and methods) can be added to an object 

dynamically after its creation. Prototype-based languages 

allow a significant degree of flexibility and tolerance 

against the dynamic modification of a computer program 

at runtime. The LC language adopts prototype-based pro-

gramming at both levels of compositional algorithms and 

sound synthesis, for better support of dynamic modifica-

tions to a computer program. 

At the compositional algorithm level, Table is provided 

for prototype-based programming. Figure 1 describes a 

simple example of prototype-based programming by Ta-

ble. A shown, LC is a dynamically-typed language and 

also supports other features such as duck-typing and first-

class functions. 

 

LC also supports prototype-based programming at the 

sound synthesis level. Instead of Table, Patch is provided, 

which can be utilized to build and modify a unit-

generator graph dynamically. Figure 2 (example a) de-

scribes an example of creating and modifying a Patch 

object. As shown in Figure 2 (example b), syntax sugars 

                                                             
2
 In Chronic, a future event can influence the result already made. As 

Brandt admits, this is a significant obstacle for the adoption of its pro-

gramming model to a real-time computer music language [4. p.77]. 
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are provided to make the code more readable. Additional-

ly, a patch can be used as a subpatch (see Figure 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Mostly-strongly-timed programming and other 

features with respect to time 

3.2.1 Mostly-strongly-timed programming 

The ideal synchronous hypothesis underlies the strongly-

timed programming concept (and other similar synchro-

nous approaches). It assumes “all computation and com-

munications are assumed to take zero time (that is, all 

temporal scopes are executed instantaneously)” and “dur-

ing implementation, the ideal synchronous hypothesis is 

interpreted to imply the system must execute fast enough 

for the effects of the synchronous hypothesis to hold” [5, 

p.360]; in a computer music language designed with such 

a synchronous approach, this assumption can be invali-

dated when the deadline for the next audio computation is 

missed because of a time-consuming task. This invalida-

tion leads to the temporal suspension of audio output, 

which is undesirable for computer music programs. As 

this problem in strongly-timed programming is rooted in 

the underlying concept of the ideal synchronous hypothe-

sis, the temporal suspension of audio output in the pres-

ence of a time-consuming tasks is inevitable without 

making any extension to the original concept. 

 

LC proposes a new programming concept, mostly-

strongly-timed programming, which extends strongly-

timed programing with the explicit context switching 

between the synchronous/non-preemptive behavior and 

the asynchronous/preemptive behavior. When the current 

context of the thread is asynchronous/preemptive, the 

underlying scheduler can suspend the execution of the 

thread at an arbitrary timing, even without the explicit 

advance of time.  

 

Thus, mostly-strongly-timed programming allows the 

time-consuming part of a task to be executed without 

suspending real-time DSP and to run in the background, 

while maintaining the precise timing behavior of strong-

ly-timed programming. To switch the context explicitly, 

sync and async statements can be used. These statements 

will execute the following statement (or compound 

statement) in the synchronous/non-preemptive and asyn-

chronous/preemptive contexts respectively. These two 

statements can be nested. Figure 4 describes a simple 

example of mostly-strongly-timed programming. 

3.2.2 Other features with respect to time 

3.2.2.1 Timing-Constraints 

LC can express both start-time constraints and execution-

time constraints with sample-rate accuracy. For start-time 

constraints, both patch and Thread objects can be given 

an offset to the start-time as an argument. For execution-

time constraints, the within-timeout statement is provided. 

Figure 5 and Figure 6 describe these features respective-

ly. As shown, when the code consumes more time than 

the given constraint by a within statement during the exe-

cution of its following statement (or blocked statements), 

it immediately jumps to the statement (or blocked state-

ments) in the matching timeout block. When timeout is 

01: //create an object ex nihilo and initialize it. 
02: var obj = new Table(); 
03: obj.balance = 0; //the initial balance is 0. 
04: //attach the methods to the object. 
05: obj.deposit = function (var self, amount){ 
06:   self.balance += amount; 
07:   return self; 
08: }; 
09: obj.withdraw = function (var self, amount){ 
10:   self.balance =+ amount; 
11:   return self; 
12: }; 
13: obj.showBalance = function (var self){ 
14:   println("current balance:" .. self.balance); 
15:   return self; 
16: }; 
17: //deposit and print. 
18: obj.deposit(obj, 1000); 
19: obj.showBalance(obj); //this prints out ‘1000’ 
20: //obj->method(a, b, c) is a syntax sugar of 
21: //obj.method(obj, a, b, c).  
22: obj->withdraw(750);  
23: obj->showBalance(); //this prints out ‘250’. 
 
Figure 1. An example of prototype-based programming 

at the level of compositional algorithms in LC. 

Example (a) 

01: //create a patch object. 
02: var p = new Patch(); 
03: 
04: //create ugens and assign them to the slots. 
05: p.src = new Sin~(freq:440); 
06: p.rev = new Freeverb~(); 
07: p.dac = new DAC~(); 
08: 
09: //make connections. 
10: p->connect(\src, \defout, \rev, \defin); 
11: p->connect(\rev, \defout, \dac, \defout); 
12: 
13: //'compile’ the patch to reflect above. 
14: p->compile(); 
15: //play the patch and wait for 1 sec. 
16: p->start();     
17: now += 1::second; 
18: 
19: //modify the unit-generator graph 
20: p.src = new Phasor~(freq:1760); 
21: p->connect(\rev, \defout, \dac, \ch1); 
22: p->disconnect(\rev, \defout, \dac, \defout); 
23: p->compile(); 
 

Example (b) 
01: //the patch statement can create and connect 
02: //ugens at once and then perform compilation. 
03: var p = patch { 
04:   //`=>’ builds a connection. 
04:   src:Sin~(freq:440) => rev:Freeverb~() 
05:   => dac:DAC~(); 
06: }; 
07: 
08: //play the patch and wait for 1 sec. 
09: p->start();     
10: now += 1::second; 
11:  
12: //modify the unit-generator graph. 
13: update_patch(p){ 
14:  src:Phasor~(freq:1760); 
15:  //`=|’ can be used for disconnection. 
16:  rev =| dac; 
17:  //the inlet & outlet can be given as below. 
18:  rev {\defout => \ch1} dac; 
19: }; 
 

Figure 2. An example of prototype-based programming 

at the level of sound synthesis in LC. 

01: //Inlet~ and Oulet~ can be used in a subpatch. 
02: var s = patch { 
03:  defin:Inlet~() {\defout => \amp} Sin~(440) 
04:  => defout:Outlet~(); 
05:}; 
06: //a simple tremolo effect. the above 's' 
07: //is given as a subpatch (`sub:s’ on line 09) 
08: var p = patch { 
09: amp:Sin~(freq:5) => sub:s => dac:DAC~(); 
10: };  
11: p->start(); 

Figure 3. An example of subpatch in LC. 
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omitted, the code simply jumps to the next statement after 

the within statement. As seen in Figure 7, execution time-

constraints can be correctly nested.  

3.2.2.2 Time-tagged message communication 

In LC, the message-passing model is applied to the inter-

thread communication. When a message is sent out, the 

delivery timing of the message can be specified. Figure 8 

describes the example of message-passing in LC. As 

shown, when the ‘<-’ operator is used for message pass-

ing, the delivery time or timing offset can be given. When 

any value of the type time is passed, it is interpreted as 

the delivery time. If the value is of the type duration, it is 

interpreted as a timing offset. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 The integration of the objects and library func-

tions that can directly represent microsounds and the 

related manipulations for microsound synthesis 

The sound synthesis framework of LC integrates the ob-

jects and functions that can directly represent the mi-

crosounds and related manipulations for microsound syn-

thesis. LC was first designed as a hosting language to 

enclose the LCSynth sound synthesis language [15, 17], 

yet there has been a significant degree of modifications 

made in the sound synthesis framework since then.  

01: //'sync' is the default context. create a patch  
02: // to make the suspension of DSP audible. 
03: var p = patch { 
04:   Sin~() => DAC~(); 
05: }; 
06: p->start(); 
07: //loading large files and extracting wavesets.  
08: //as DISK I/O can be time consuming, this can  
09: //temporarily suspend the real-time output. 
10: LoadSndFile(0, "/large_snd_file.aiff"); 
11: var wavesets = ExtractWavesets(0); 
12: 
13: //performing it in `async'. 
14: async { 
15:   //as this block can be preempted without  
16:   //the advance of logical time, the suspension 
17:   //of the audio computation does not occur. 
18:   LoadSndFile(0, "/large_snd_file.aiff"); 
19:   wavesets = ExtractWavesets(0); 
20: } 
21: 
22: //sync/async can be nested freely 
23: sync { 
24:   //now in the synchronous context 
25:   some_function_call(1, 2,3 ); 
26: 
27:   //switch to the asynchronous context 
28:   async { 
29:     some_ohter_function_call(4, 5); 
30:     //switch to the synchronous context again. 
31:     sync { 
32:       yet_anohter_function_call(4, 5); 
33:     } 
34:     //now back to the asynchronous context 
35:     println("done.");  
36:   } 
37:   //now back to the synchronous context 
38:   println("bye!"); 
39: } 

Figure 4. An example of mostly-strongly-timed program-

ming in LC. 

01: //giving the start-time offset to a patch. 
02: var p = patch { 
03:   Sin~(880) => DAC~(); 
04: }; 
05: //the patch starts 1 second later. 
06: p->start(offset: 1::second); 
07: 

08: //giving the start-time offset to a thread. 
09: //create a first class function. 
10: var f = function(var message){ 
11:   println("message : " .. message); 
12: }; 
13: 
14: //create a thread by LC’s ‘@’ operator. 
15: var thread = f@("Hello, world!"); 
16: //the thread starts executing after 2 second. 
17: thread->start(offset: 2::second); 

Figure 5. An example of start-time constraints in LC. 

01: within(1::second){ 
02:   within(2::second){ 
03:     //the code jumps to the outer timeout block 
04:     //exactly after 1 second. 
05:     now += 3::second; 
06:   } 
07:   //this timeout block will never be reached. 
08:   timeout { 
09:     println("the inner ‘timeout’."); 
10:   } 
11: } 
12: //the code jumps to below block as expected. 
13: timeout { 
14:   println("the outer 'timeout'."); 
15: } 
 

Figure 7. An example of execution-time constraints in LC (2). 

01: //giving the execution-time constraints 
02: within(2::second){ 
03:   var cnt = 0; 
04:   while(true){ 
05:     println("count : " .. cnt); 
06:     now += 0.5::second; 
07:     cnt += 1; 
08:   } 
09:   //the below code is never reached. 
10:   println("done."); 
11: } 
12: timeout { 
13:   println("timeout!"); 
14: } 
15: //’time out’ block can be omitted. 
16: within(3::second){ 
17:   async while(true) println(“*”); 
18: } 
 

Figure 6. An example of execution-time constraints in LC (1). 

01: //a function to be launched as a thread. 
02: var f = function() { 
03:   var thread = GetCurrentThread(); 
04:   while(true){ 
05:     //receive a message in the blocking mode. 
06:     var msg = thread->recv(\blocking); 
07:     if (msg == \quit){ 
08:       break; 
09:     } 
10:     println("message :" .. msg); 
11:   }  
12:   println("quit."); 
13:   return; 
14: }; 
15: 
16: //create and start a thread. 
17: var thread = f@(); 
18: thread->start(); 
19: 
20: //sending messages... 
21: //deliver the message immediately. 
22: thread <- "Hello!";  
23: 

24: //deliver the message at the given 'time'. 
25: thread <- @now + 1::second, "1 second passed"; 
26: 
27: //deliver the message after the given duration. 
28: thread <- @2::second, "2 second passed"; 
29: thread <- @3::second, \quit; 

Figure 8. An example of time-tagged inter-thread message 

communication in LC. 
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In the current version of LC, the microsound synthesis 

objects and functions are completely separated from the 

unit-generator sound synthesis framework in the current 

version. However, the basic programming model for mi-

crosound synthesis in LCSynth as described in [17] is 

still applicable to LC programs.  

 

In LC, Samples is the object used to represent a single 

microsound. Samples is an immutable object, which con-

tains the sample values within. There is no limitation for 

the sample size
3
. SampleBuffer is a mutable version of 

Samples. These two objects are mutually convertible by 

calling toSampleBuffer and toSampleBuf method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 and Figure 10 describe simple examples of syn-

chronous granular synthesis
4
, and pitch-shifting by gran-

                                                             
3
 However, an out-of-memory exception is thrown if the memory allo-

cation failed when creating a Samples or SampleBuffer object. 
4
 In synchronous granular synthesis, the sound "results from one or 

more stream of grain” and “the grains follow each other at regular inter-

vals” [19, p.93]. 

ulation [19, p.127] in LC, respectively. As seen on line 

05 in Figure 9, each sample within Samples and Sam-

pleBuffer is directly accessible by the ‘[]’ operator. 

 

Figure 11 shows a pictorial representation of waveset 

harmonic distortion. As shown, each waveset
5

 is 

resampled to produce the harmonics of the original 

waveset and then overlap-added to the original after be-

ing weighted. Figure 12 shows a simple example only 

with the second harmonics, not weighted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 describes almost the same example of waveset 

harmonic distortion, but with the triangle envelope ap-

plied to the entire output.  As shown, a Samples object 

can be written directly into the input of a unit-generator 

(lines 16 to 22) and the output of a unit-generator can be 

taken out as a Samples object (line 24). Figure 14 shows 

another example of waveset harmonic distortion. This 

example also applies reverberation together with envelop-

shaping. As shown, a patch can be used in the same man-

ner as the Figure 13 example. Furthermore, as seen lines 

31to 46 in the Figure 14 example, if a patch is active, the 

patch automatically reads the given input and outputs the 

processed sound to the DAC output. 

 

Thus, the collaboration between the unit-generator con-

cept and LC’s microsound synthesis abstraction can be 

performed quite easily.  

                                                             
5
 A waveset is defined as “the distance from a zero-crossing to a 3rd 

zero-crossing” [25, Appendix II p.50]. In Figure 11 (left), each waveset 

is separated by grey lines. 

01: //instantiate a new SampleBuffer object and 
02: //fill it with sinewave of 256 samp freq * 4. 
03: var sbuf = new SampleBuffer(1024); 
04: for (var i = 0; i < sbuf.size; i+=1){ 
05:   sbuf[i] = Sin(3.14159265359 * 2 * 
06:                 (i * 4.0 / sbuf.size)); 
07: } 
08:  
09: //create a grain.  
10: //first convert it to a Samples object. 
11: var tmp = sbuf->toSamples();  
12  //apply a hanning window. 
13: var win = GenWindow(tmp.dur, \hanning); 
14: var grn = tmp->applyEnv(win)->resample(440); 
15: 
16: //perform synchronous granular synthesis 
17: within(5::second){ 
18:   while(true){ 
19:     PanOut(grn, 0.0); //0.0 = center. 
20:     now += grn.dur / 4; 
21:   } 
22: }  
 

Figure 9.  An example of synchronous granular synthesis in LC. 

 
01: //load the sound file onto Buffer No.0. 
02: LoadSndFile(0, "source.aif"); 
03: 
04: //perform sound synthesis for 2 seconds. 
04: within(2::second){ 
05:   //these are the synthesis parameters. 
06:   var pitch = 2; 
07:   var rpos   = 0::second; 
08:   var grnsize= 512; 
09:   var grndur = grnsize::samp; 
10:   var win = GenWindow(grndur, \hanning); 
11:   var rdur   = grndur * pitch; 
12:      
13:   //perform pitch-shifting. 
14:   while(true){ 
15:     //read the sound fragment. 
16:     var snd  = ReadBuf(0, rdur, offset: rpos); 
17: 
18:     //resample and apply an envelope. 
19:     var tmp = snd->resample(grnsize); 
20:     var grn = tmp->applyEnv(win); 
21: 

22:     //output the grain. advance the read pos. 
23:     PanOut(grn); 
24:     rpos += grn.dur / 2; 
25:      
26:     //wait until the next timing. 
27:     now  += grn.dur / 2; 
28:   } 
29: } 

Figure 10.  An example of pitch-shifting by granulation in LC. 

01: //load the sound file and extract wavesets. 
02: LoadSndFile(0, "/sound/sample1.aif"); 
03: var wvsets = ExtractWavesets(0); 
04: 
05: //perform a simple waveset harmonic distortion. 
06: for (var i =0; i < wvsets.size; i+= 1){ 
07:   //resample the waveset at the given index  
08:   //so to create the 2nd harmonics. 
09:   var orig = wvsets[i]; 
10:   var octup= orig->resample(orig.size / 2); 
11: 
12:   //schedule the original. 
13:   WriteDAC(orig); 
14:   //schedule two 2nd harmonics. give the offset  
15:   //to schedule another right after the 1st one. 
16:   WriteDAC(octup); 
17:   WriteDAC(octup, offset:octup.dur); 
18: 

19:   //sleep until the next timing. 
20:   now += orig.dur; 
21: } 

Figure 12.  An example of waveset harmonic distortion in LC. 

Figure 11.  A pictorial representation of waveset harmonic 

distortion technique. 
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To add more, FFT/IFFT can be also performed within the 

same microsound synthesis framework. Figure 15 de-

scribes a simple cross-synthesis example in LC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 

4.1 Prototype-based programming in LC 

As briefly mentioned in Section 2.1, while there exists 

the need for a more dynamic computer music language, 

the existing computer music languages exhibit certain 

problems at least at either the level of sound synthesis or 

the level of compositional algorithms.  

 

For instance, as ChucK is a statically-typed class-based 

language, ChucK is not suitable for dynamic modification 

at runtime. Assume a variable src is assigned a SinOsc 

unit-generator; one cannot simply assign a Phasor unit-

generator to src for replacement, since the types of these 

two objects differ. Using a common parent class Ugen for 

the type of src would hinder access to the fields or meth-

ods that exist in SinOsc or Phasor, but not in Ugen. Fur-

thermore, it shows a certain degree of viscosity
6
 in the 

modification of a synthesis graph, as it is required to dis-

connect the connections to the unit-generator to be re-

placed first, and then rebuild the connections to a new 

unit-generator. This is because ChucK builds the connec-

tions between the instances of the unit-generators rather 

than the variables. 

 

SuperCollider [24] seems fairly dynamic in its basic lan-

guage concept, yet its Just-in-Time programming library 

[24, chapter 7] exhibits a different kind of viscosity 

against the dynamic modification of a synthesis graph. In 

Just-in-Time programming, while there isn’t the necessity 

for reconnection as in ChucK, the modification of a syn-

thesis graph is allowed only at the point where a proxy 

object is utilized. When a modification where a proxy 

object is not used needs to be made, it can require a con-

siderable degree of recoding. Figure 15 briefly illustrates 

a typical viscosity problem in Just-in-Time programing; 

even only to make c and d in the synthesis graph (on lines 

                                                             
6
 Viscosity is defined as “resistance to change: the cost of making small 

changes” and it “becomes a problem in opportunistic planning when the 

user/planner changes the plan” [3]. 

01: //load the sound file and extract wavesets. 
02: LoadSndFile(0, "/sound/sample1.aif"); 
03: var wvsets = ExtractWavesets(0); 
04: 

05: //create an triangle envelope ugen. trigger it. 
06: var env = new TriEnv~(2::second); 
07: env->trigger(); 
08: 
09: //perform a simple waveset harmonic distortion. 
10: for (var i =0; i < wvsets.size; i+= 1){ 
11:   //resample the waveset at the given index  
12:   //so to create the 2nd harmonic. 
13:   var orig = wvsets[i]; 
14:   var octup= orig->resample(orig.size / 2); 
15: 
16:   //write the original to the ugen input. 
17:   env->write(orig); 
18:   //write two 2nd harmonics. give the offset  
19:   //to schedule another right after the 1st one. 
20:   env->write(octup); 
21:   env->write(octup, offset:octup.dur); 
22: 
23:  //read the output of the ugen. send it to dac. 
24:   var out = env->pread(orig.dur); 
25:   WriteDAC(out); 
26:   //sleep until the next timing. 
27:   now += wvsets[i].dur; 
28: } 

Figure 13.  An example of waveset harmonic distortion in LC, 

with the triangle envelope applied to the entire output. 

01: //load the sound file and extract wavesets. 
02: LoadSndFile(0, "sample2sec.aif"); 
03: var wvsets = ExtractWavesets(0) 
04: //create a patch and trigger the envelope 
05: var pat = patch { 
06:   defin:TriEnv~(2::second) => Freeverb~() 
07:  defout::Outlet~(); 
08: }; 
09: pat.defin->trigger(); 
10:  
11: //perform a simple waveset harmonic distortion. 
12: for (var i =0; i < wvsets.size; i+= 1){ 
13:   //resample the waveset at the given index  
14:   //so to create the 2nd harmonics. 
15:   var orig = wvsets[i]; 
16:   var octup= orig->resample(orig.size / 2); 
17: 
18:   //write to the patch’s default input. 
19:   pat->write(orig); 
20:   pat->write(octup); 
21:   pat->write(octup, offset:octup.dur); 
22: 
23:  //read the output of the ugen. send it to dac. 
24:   var out = pat ->pread(orig.dur); 
25:   WriteDAC(out); 
26:   //sleep until the next scheduling timing. 
27:   now += wvsets[i].dur; 
28: } 
29: 
30: //swap the outlet with DAC and play the patch. 
31: update_patch(pat) { 
32:   defout:DAC~(); 
33: }; 
34: pat.defin->trigger(); 
35: pat->start(); 
36: 
37: //perform a simple waveset harmonic distortion. 
38: for (var i = 0; i < wvsets.size; i+= 1){ 
39:   var orig = wvsets[i]; 
40:   var octup= orig->resample(orig.size / 2); 
41:    
42:   pat->write(orig); 
43:   pat->write(octup); 
44:   pat->write(octup, offset:octup.dur); 
45: 
46:   //as the patch is active, there is no need to  
47:   //read the patch and send it to dac. 
48:   now += wvsets[i].dur; 
49: } 

 
Figure 14.  An example of waveset harmonic distortion in LC, 

with the triangle envelope and reverberation applied. 

01: //load the sound files onto the buffers. 
02: LoadSndFile(0, “/sound/sound1.wav”); 
03: LoadSndFile(1, “/sound/sound2.wav”); 
04: //the duration of each FFT/IFFT window and 
05: //the number of the overlapping windows. 
06: var dur =1024::samp; 
07: var ovlp= 4; 
08:   
09: //process 800 frames. 
10: for (var i=0; i < 800; i += 1){ 
11:   //first, extract snd fragments from the buffers. 
12:   var src1 = ReadBuf(0, dur, offset:i* dur / ovlp); 
13:   var src2 = ReadBuf(1, dur, offset:i* dur / ovlp); 
14: 
15:   //perform FFT. PFFT applies a window and returns 
16:   //an array of Samples objects [magnitude, phase]. 
17:   var pfft1 = PFFT(src1, \hanning); 
18:   var pfft2 = PFFT(src2, \hanning); 
19: 
20:   //cross synthesis 
21:   var ppved = pfft1[0]->mul(pfft2[0]);  
22: 
23:   //perform IFFT and writes to the sound output. 
24:   var pifft = PIFFT(ppved, pfft1[1], \hanning); 
25:   //wait until the next timing. 
26:   now += src1.dur / ovlp; 
27: } 

Figure 15.  An example of cross-synthesis in LC. 
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07 and 08) replaceable, almost the whole code must be 

rewritten as on lines 17 through 26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impromptu also supports a considerable degree of dy-

namic modification at the compositional algorithm level, 

as it is an internal domain-specific language
7
 built on 

LISP, which is highly dynamic. At the sound synthesis 

level, it depends on Apple’s Audio Unit framework and 

the dynamic modification of the connections between 

Audio Units is also supported. However, the replacement 

of audio units must involve the removal of existing con-

nections and requires reconnections as in ChucK.  

 

On the contrary, LC adopts the concept of prototype-

based programming at both the compositional algorithms 

and sound synthesis levels. As the connections in a syn-

thesis graph in LC’s patch are made between the slots and 

not between the instances of unit-generators, the re-

placement of unit-generators can be performed simply by 

an assignment. The modification of a synthesis graph can 

be performed quite simply as shown in Figure 2.  

4.2 Mostly-strongly-timed programming and other 

features with respect to time in LC 

As already discussed in Section 2.2, in computer music 

languages designed with the synchronous approach, a 

time-consuming task can easily lead to the temporary 

suspension of real-time DSP, as seen in ChucK, LuaAV 

and the like. However, if the sound synthesis thread (or 

process) is separated from a thread (or process) that per-

forms compositional algorithms, the synchronization be-

tween them will be imprecise and sample-rate accurate 

timing behavior will be unrealizable in today’s computer 

systems; thus, such languages as SuperCollider or Im-

promptu fail to provide the sample-rate accurate timing 

behavior. LC’s mostly-strongly-timed programming pro-

                                                             
7
 “An internal DSL is a DSL represented within the syntax of a general-

purpose language” [9, p.15] and morphs “the host language into a DSL 

itself – the Lisp tradition is the best example of this” [8]. 

vides one solution for this problem by extending strong-

ly-timed programing with the explicit switching between 

synchronous and asynchronous contexts as described in 

the previous section.  

 

Many computer music languages lack certain desirable 

features with respect to time. While the designers of Im-

promptu clearly take such features into consideration and 

provide the capability for timing constraints, Impromptu 

does not provide the feature of time-fault tolerance and 

cannot handle the violation of execution-time constraints. 

Impromptu’s framework to handle execution-time con-

straints has another significant problem in that it cannot 

describe the nested execution-time constraints. Moreover, 

as Impromptu performs sound synthesis in a different 

thread than threads for compositional algorithms, the tim-

ing behavior of Impromptu is not very precise in compar-

ison with other languages designed with the synchronous 

approach. 

 

On the contrary, LC provides the sample-rate accuracy in 

timing behavior. Both constraints on start-time and exe-

cution-time are performed with the sample-rate accuracy. 

Start-time constraints will be never violated due to LC’s 

synchronous behavior. By the within-timeout statement, 

LC can handle the violation of execution-timing con-

straints. Execution-time constraints can be correctly nest-

ed. 

4.3 The Integration of the objects and library func-

tions/methods for microsound synthesis in LC 

As discussed in Section 2.3, LC is not the first language 

with objects that can directly represent microsounds. The 

previous works by Bencina (the software design for gran-

ular synthesizers), Brandt (Chronic computer music lan-

guage), and Wang (ChucK’s unit-analyzer concept) also 

discuss the necessity for more appropriate abstractions 

for microsound synthesis, emphasizing the difference 

between microsound synthesis techniques and other con-

ventional synthesis techniques that can fit within the unit-

generator concept. 

 

Bencina states “granular synthesis differs from many 

other audio synthesis techniques in that it straddles the 

boundary between algorithmic event scheduling and pol-

yphonic event synthesis” [2, p.56]. Brandt attributes the 

difficulty in microsound synthesis programming in unit-

generator languages partly to the inaccessibility to the 

lower-level details, which the unit-generator concept ab-

stracts away
8
[3].  Wang et al. also state that “the high-

level abstractions in the system should expose essential 

low-level parameters while doing away with syntactic 

overhead, thereby providing a highly flexible and open 

framework that can be easily used for a variety of tasks” 

when discussing the design of ChucK’s unit-analyzer 

concept [23]. 

                                                             
8
 Brandt discusses that “if a desired operation is not present, and cannot 

be represented as a composition of primitives, it cannot be realized 

within the language” in a unit-generator language, in [3, p.4]. 

01: p = ProxySpace.push // if needed  
02:  
03: ~a = Lag.ar(LFClipNoise.ar(2 ! 2, 0.5, 0.5), 0.2); 
04: ( 
05: ~b = {  
06:   var c,d; 
07:   c = Dust.ar(20 ! 2); 
08:   d = Decay2.ar(c, 0.01, 0.02, SinOsc.ar(11300)); 
09:   d + BPF.ar(c * 5, ~a.ar * 3000 + 1000,0.1) 
10: }; 
11: );  
12:  
13: ~b.play;  
14:    
15: // the refactored code from above 
16: 
17: (  
18: ~a={ 
19:  var a;  
20:  a = Lag.ar(LFClipNoise.ar(2 ! 2, 0.5, 0.5), 0.2);  
21:  BPF.ar(~c.ar * 5, a * 3000 + 1000, 0.1); 
22: } 
23: ); 
24: ~c = {Dust.ar(20 ! 2)}; 
25: ~d = {Decay2.ar(~c.ar,0.01,0.02),SinOsc.ar(11300)}; 
26: ~b = ~a + ~b; 
27:    
28: ~b.play; 
 

Figure 16.  Refactoring a synthesis graph at runtime 

in SuperCollider [24, p.212]. 
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LC’s microsound synthesis framework is also designed 

with a similar approach. As shown in the examples in 

Section 3.3, in LC’s programming model, microsound 

synthesis is described straightforwardly as an algorithmic 

scheduling of microsound objects. Each sample within a 

microsound object is directly accessible, while the utility 

methods are also offered to manipulate samples at once. 

 

The significant difference between LC and these previous 

works is that LC provides a programming model for real-

time interactive computer music languages with more 

generality; the works by Bencina and by Brandt do not 

target the design of real-time computer music languages, 

and Wang’s unit-analyzer concept targets only frequency-

domain signal processing and analysis. In addition, LC’s 

microsound synthesis framework is also highly independ-

ent from the unit-generator concept. 

5. CONCLUSIONS  

In this paper, we discussed the three issues in today’s 

computer music practices and described how each feature 

of LC corresponds to them, with code examples and a 

comparison with other languages. As LC’s language de-

sign is motivated to contribute to the solutions to the is-

sues discovered in recent creative practices, it can benefit 

both further research on computer music languages and 

creative practices, as one design exemplar. 

6. FUTURE WORK 

As the current version of LC is just a proof-of-concept 

version, we are currently planning to implement a more 

efficient version. We are also currently working to pro-

vide more detailed publications on each of LC’s features.  
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