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ABSTRACT 

This paper presents an approach to the generation of 

periodic signals through the application of Euclidean 

geometry in the time domain. In particular, the content of 

this paper is focused on waveforms derived from regular 

polygons. It is an attempt to show how the geometrical 

relations and proportions of regular polygons and star 

polygons with respect to their Schläfli symbol can be 

made audible, and how these relations can be used in an 

acoustical or a musical context. A basic description is 

given of how to construct such geometrical waveforms 

and musical scales using the underlying geometry. In 

addition, this paper draws inspiration for its approach to 

synthesis and composition from experimental approaches 

to drawn graphical / ornamental sound. These include 

methods that came to prominence in Russia and Germany 

in the first part of the 20
th

 century, such as those which 

used film and paper as primary media, and those that 

developed during the post-war period, including Oramics, 

and others. Most importantly, this paper describes a 

framework and examples that demonstrate processes 

whereby the geometry of regular polygons can be used to 

generate specific acoustic phenomena in frequency, tim-

bre, phase, and metre.  

1. INTRODUCTION 

The relation of music and geometry can be argued to 

share a timeline alongside that of the creation of all musi-

cal instruments. Furthermore, geometry is used to de-

scribe acoustics, aspects of aesthetics, and is also used for 

theories and concepts in composition and perception of 

sound, for instance by Chladni[1], H. Jenny[2], D. Ty-

moczko [3], G. Mazzolla [4]. However, it seems that 

there is relatively little research which discusses the ge-

ometry of waveforms that are derived from, or related to, 

regular polygons. With the exception of the widely used 

sawtooth, triangle, and square wave, many texts on Fou-

rier series usually do not cover other polygonal wave-

forms, although the theory to build and analyse them 

might exist.   

 

During the first half of the 20
th

 century, Russian and 

German composers
1
 developed a range of techniques to 

generate sounds with ornamental patterns drawn on film. 

Two key publications which effectively detail the work of 

this period are Sound in Z by Andrey Smirnov [5]  and 

“Tones from out of Nowhere”: Rudolph Pfenninger and 

the Archaeology of Synthetic Sound by Thomas Y. Levin 

[6]. These both describe the work and experiments of a 

number of key Russian and German pioneers. Similar 

techniques were later used by Norman McLaren and 

Daphne Oram. Importantly, since the development of 

modern personal computers, graphical interfaces to con-

trol or draw sounds have become quite common in digital 

synthesisers
2
. 

This research began between 1999 and 2000 as an ex-

periment into polymetric structures. Soon this work natu-

rally led to the exploration of corresponding graphical 

representations. Further research resulted in the develop-

ment of an approach to the visualisation of polymetric 

structures through the use of regular polygons in a circle 

as shown in Figure 1 on the left. These polymetric images 

are reminiscent of commonly used synthesised wave-

forms; sawtooth (figure 2), triangle (figure 3) and square 

(figure 3) waves
3
. This led to the study of whether more 

waveforms might be derived from regular polygons, and 

how they may relate to one another. 

The first attempts to realize audio outputs from these 

waveforms as part of this project were produced on the 

Atari ST platform in Omikron Basic in 2000. Some time 

later, at Goldsmiths, University of London in 2012, the 

project was recoded in Processing, and then in JavaScript 

using the webAudio framework. The outcome was two 

prototype online synthesisers, with one still in an experi-

mental stage. They both run only in the Google Chrome 

browser and are currently located at the following web-

site: 

http://igor.gold.ac.uk/~mu102dc/ngonwaves/start.html 

There are also audio examples on the website which are 

useful for those interested in exploring the synthesis ap-

proaches detailed here. 

                                                
1
 Russian composer Arseny Avraamov presented his first graphical 

sound experiments in 1930. German composers that worked with drawn 

sounds around the same time were Rudolf Pfenninger and Oskar 

Fischinger. 
2
 For instance, the wavetable synthesisers by PPG and Waldorf or the 

Fairlight synthesisers. 
3
 N-gon waves in all the figures, except figure 10 and 17, of this paper 

are shown as bold black connected lines. 
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The two synthesiser prototypes are called the “N-gon 

Wave Synthesizer” and “N-gon Wave Synthesizer Se-

quencer”. Polygons are often referred to as “n-gons”, 

hence we chose the term “n-gon waves” for the polygonal 

waveforms.  

Fundamentally, a unit circle or unit frequency is used to 

derive the waveforms, from which a variety of scales and 

timbres can be generated. To some degree this technique 

enables the representation of geometrical relations in 

sound. Some of the results of these experiments are pre-

sented here. 

 

Figure 1. Polymetric structures visualized as polygons 

in a unit circle (left). A pentagon wave with start phase 

0 is derived from a pentagon (right). 

 

     
Figure 2. Sawtooth waves or trigon waves with start 

phase 0 and π/n derived from a triangle.  

  

      
Figure 3. A triangle and a square wave or tetragon 

waves with start phase 0 and π/n derived from a square 

 

 
Figure 4. A heptagram wave (black) with start phase 2π/n 

and four edges is derived from four edges (red) of a hepta-

gram (grey) with Schläfli symbol {7/2}. The figure shows 

variables (a0 , an , φ  =  ph , R , r , T0 , Ti ,  Tn ) that are 

used for n-gon wave calculations explained in sections 2 

and 3 of this paper. The grey circle waves are derived 

from the circumcircle (wavelength = T0), the incircle 

(wavelength = Ti), and the wavelength (or frequency) of 

the heptagram wave (φ  = π, wavelength = Tn). 

2. BASIC DESCRIPTION OF A N-GON 

WAVE 

The following basic description employs formulas that 

can be used directly to generate or program n-gon waves. 

It is not intended as a complete example, instead it fo-

cuses on the central approaches used for the construction 

of n-gon waves.  

It has to be pointed out that the waveforms described 

here are not polygon sine waves. Although a similar ap-

proach, the waves presented here are angular and are not 

curved and smooth as polygon sine waves.  

One way to construct a n-gon wave is to cut a regular 

polygon in two halves along a line from a vertice to the 

middle of its opposite edge, and then rotate one half 

either around the vertice or the edge, as shown in figures 

2 and 3. This method works fine with polygons with 

Schläfli-Symbol {n} as can also be seen in figure 1 on the 

right. Another approach needs to be used to generate 

waveforms derived from star polygons with fractional 

Schläfli-Symbols {n/q}, as depicted in figure 4. In this 

case a regular polygon or a star polygon is unwrapped or 

unfolded. The following description focuses on this sec-

ond approach. 

2.1 Variables and Basic Calculations 

The following variables (see also figure 4) are used for 

the construction of a n-gon wave: 

 

S   =  Sample rate 

n   =  The number of vertices or edges of a regular 

  polygon, Schläfli symbol {n} (the letter p is  

  also used instead of n for the Schläfli symbol of 

  star polygons {p/q}) 

q   =  The stellation of a regular polygon, i.e. the edge 

  or line that connects every qth vertice of the n  

  vertices on the circle periodically, it represents 

  which and how vertices are connected, for in 

  stance every second vertice or every third  

  vertice, etc., it is the denominator In the Schläfli 

  symbol {n/q} (or if p instead of n is used {p/q}) 

l   =  The number of connected edges or lines 

φ  = Start phase 

T0  =  Wavelength of the unit circle wave in samples 

Ti  =  Wavelength of the incircle wave in samples 

Tn  =  Wavelength of the n-gon wave in samples 

f0  = Fundamental frequency of the unit circle wave 

fn  = Frequency of the n-gon wave 

a0   = Amplitude of the unit circle wave 

an   = Amplitude peak of the n-gon wave 

Ω   = Unit-Circle Exponent 

ε    = Frequency-Ratio Exponent 

R   = Radius circumcircle 

r    =  Radius incircle 

rn =  Radius of the n-gon wave unit circle with  

  frequency fn 

m  =  Gradient 

 

The calculations for the radius of the circle and the in-

circle are: 

R  = S / 4f0     (1) 

r = Rcos(qπ/n)   (2) 

The following formula is used to calculate the gradients 

for the interpolation between the vertices of the n-gon 

wave: 
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                n - 1      a0 [ sin(2πq(k+1) / n + φ) - sin(2πqk / n + φ) ] 

m(k) = Σ    ———————————————————— 

           
k = 0     | R [ cos(2πqk / N+ φ) - cos(2πq(k+1) / n + φ) ] |   

        (3) 

If n gets larger, the n-gon wave converges to a po-

lygonal circle wave. A polygonal circle wave is not the 

same as a sine wave as can be seen from figure 5. A po-

lygonal circle wave is comprised of partial sine waves 

and has a distinct sound. The frequency spectrum of a 

polygonal circle wave is illustrated in figure 6. In this 

paper, the “polygonal” is discarded and the term “circle 

wave” is used to refer to a polygonal circle wave. 

    

Figure 5. A polygonal circle wave and a 

sine wave of the same frequency. 

3. FREQUENCY, AMPLITUDE, PHASE, 

AND TIMBRE - THE UNIT CIRCLE 

AND THE UNIT FREQUENCY 

3.1 Frequency and Unit Circle 

If a n-gon wave is derived from a unit circle (that can be 

the circumcircle or the incircle) and the two basic start 

phases (φ = 0, φ = π/n) are used, there are three cases to 

be considered for the calculation of its frequency: if n is 

even and the start phase φ = 0, if n is even and φ = π/n, 

and if n is odd and the start phase is φ = 0 or φ = π/n. The 

frequencies can be calculated with these formulas:   

First calculate Tn  

    4R,  n = even and φ = 0 

Tn = 4r,  n = even and φ = π/n                  

      2R+ 2r, n = odd and φ = 0 or φ = π/n        

                                       (4)                              

Or alternatively, especially if Schläfli symbols of the 

form {n/q} are used for star polygons: 

                 n                                                                                          

Tn   =  Σ  | R [ cos(2πqk/n + φ) – cos(2πq(k+1)/n + φ) ] | 
       k =0       (5) 

Then calculate:   

            fn = S / Tn     (6)                             

A n-gon wave can also be transposed to any frequency 

fn with respect to recursion exponents (Ω, ε) and recalcu-

lations of the radius rn for the transposed wave, like this: 

    R [ 1 / cos(qπ/n) ] 
Ω
                                                                     

       rn =  —————————  

                            (T0 / Tn)
 ε  

                (7) 

Then replace R with rn in calculation (4) or (5) to 

recalculate Tn. For instance, to calculate Ti set ε to 1 and 

multiply rn (the new R) by 4. 

3.2 Amplitude 

The peak amplitudes of the n-gon waves are also depend-

ent on the start phases and the number of vertices, or 

edges, respectively. As the amplitude of the unit circle 

wave a0 is set to its radius R, the amplitude peaks of the 

related n-gon waves decrease for higher frequencies or 

increase for lower frequencies proportionally to R. This 

has an impact on the amplitude peaks produced by the 

waveforms, which affect their timbre. The focus of this 

paper is on the frequencies (scales) and the timbre in 

isolation from the structure of the amplitude variations, 

which will be detailed in future publications. 

3.3 Phase 

So far, two basic start phases are often used, as de-

scribed above: φ = 0 and φ = π/n. The difference that 

these two phases make can be seen in the image of the 

tetragon waves in figure 3. A start phase φ = 0 generates 

a triangle wave, whereas a start phase of φ = π/n produces 

a square wave. Both waves have different frequencies if 

they are derived from the same unit circle and same fre-

quency-ratio exponents.  

The phase can also be used to generate polymetric 

phase rotation. If the phase of different n-gon waves 

changes with the same speed, polymetric patterns can be 

perceived. This corresponds to the image (figure 1) that 

led to this experiment with n-gon waves.  

With an almost symmetric n-gon wave, such as a star 

polygon wave, and the matching n, q, l and φ settings, it 

is possible to generate an audio effect similar to a n-gon 

wave being played forward or backward. 

3.4 Timbre and Unit Frequency 

If different n-gon waves have the same unit frequency, 

the differences in the timbre or the harmonic spectrum of 

the waveforms can sometimes be heard and compared 

quite well. The timbres of n-gon waves range from the 

common triangle, sawtooth and square wave like sounds 

for n-gon waves with Schläfli-Symbol {n} to coarser and 

percussive sounds with Schläfli-Symbol {n/q}. As men-

tioned before in 3.3 the start phase contributes also to the 

timbre of a n-gon wave.  

Through a basic analysis of n-gon waves with a Dis-

crete Fourier Transform (DFT), followed by resynthesis 

with an Inverse Discrete Fourier Transform (IDFT), it 

appears that in the frequency domain, if n is odd all par-

tials seem to be used for building the wave, and when n is 

even odd numbered partials seem to be much more pres-
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ent. Figure 6 shows the amplitude, phase spectrum of a 

circle wave, and the resynthesized circle wave. 

 

Figure 6. The phase and amplitude spectrum of a circle wave, 

and above the resynthesized circle wave.  

3.5 N-gon Wave Drum Sound Example 

Here is a short example of how to set the parameters to 

synthesize a drum like sound with a n-gon wave derived 

from a star polygon with Schläfli symbol {420/209}:  

n = 420 (a large n for star polygons) 

q = n/2 – 1 = 209 (also n/2, more melodic)        

l = n/4 = 105 (or higher or lower, affects the timbre)                                      

φ = π/2 = 2π/n(n/4) (changes affect the timbre)         

f0 = 55Hz (higher or lower values for different pitches) 

Figures 7 and 8 show parts of the same n-gon wave. In 

figure 7 the circle seems to be filled with the grey color 

that is used for the edges of the polygon in the circle. 

This is due to the large number of 420 vertices or edges 

that are used. The actual n-gon wave is much longer than 

seen here. 

Figure 8 shows a magnified version of a smaller part of 

the same n-gon wave where the edges of the star polygon 

can be identified. As can be seen in figure 7, if a star 

polygon with a large n (i.e. a large number of vertices or 

edges) is used to generate a n-gon wave similar to this 

one, the gradient decreases for each edge. At some limit, 

i.e. if n would be infinite, it might converge to 0. 

     

Figure 7. A n-gon wave with Schläfli symbol {420/209}, start 

phase φ = π/2, and number of connected edges l = 105. The 

wave has a drum like timbre. Because a star polygon with 420 

vertices or edges is used, the circle seems to be a grey dot. 

 

Figure 8. A magnified image of the n-gon wave shown in fig-

ure 8. Parts of the edges of the star polygon in the unit circle are 

visible. 

4. SCALES  

As should appear obvious, every n-gon wave can oscil-

late with every frequency and they can be used in every 

kind of scale, albeit some scales seem to be inherent to 

the subject itself.  

The scales presented here should be seen as an ap-

proach to make the geometrical relations and proportions 

of regular polygons and star polygons audible. The n-gon 

wave scales described here are derived from regular 

polygons and star polygons and a unit circle (i.e. all n-

gon waves are derived from the same circumcircle radius) 

or a unit frequency ratio (i.e. the ratio of the circle wave 

wavelength and the n-gon wavelength) of the correspond-

ing circle wave.  

Other properties of regular polygons could be chosen as 

unit to derive n-gon scales from, for example, a unit in-

circle, a unit edge or a unit stellation line that connects 

the vertices of a star polygon. It is possible to build scales 

from the phases of the stellations of a star polygon if they 

are used as start phases (φ).  

More than one unit  parameter or other geometric prop-

erties of regular polygons or star polygons can also be 

used for the construction of n-gon wave scales. For in-

stance, unit circle recursion, unit frequency ratio recur-

sion, and the stellations of a star polygon can be com-

bined into a scale.  

4.1 Unit Circle Scales 

Unit Circle Scales are comprised of n-gon waves with φ 

= 0 and φ = π/n derived from n-gons adjacent to one or 

more unit circles. A unit circle is used as a centre fre-

quency of a corresponding circlewave of which the other 

n-gon wave frequencies of the scale are derived from. 

The unit circle wave figures as a form of axis to which 

the n-gon waves of a Unit Circle Scale are adjacent to. 

Here is a first example. The range of one octave and 

one additional higher semitone can be constructed with 

two trigon waves and two tetragon waves. To derive the 

fundamental frequency of the scale, a trigon with start 

phase 0 on the outside adjacent to the unit circle is used 

(unit circle exponent Ω = 1). For its octave a trigon with 

startphse π/n on the inside adjacent to the unit circle is 

used (unit circle exponent a = 0). The ratio of the circle 

wave and the trigon waves will then be the fifth on the 

outside, and fourth on the inside, with the ratios 3/4 for 

the first and 3/2 for the octave trigon wave. The two 

tetragon waves are used to build another octave around 

the circlewave which then becomes their tritone, the 

ratios of the tetragon waves and the circle wave are: √2/2 

and √2, respectively.  

All n-gon waves with an odd n have different frequen-

cies.  The two start phases φ = 0 and φ = π/n do not 

change the frequency or the amplitude peaks of the n-gon 

waves with an odd n, but the start phases do change the 

frequencies and the amplitudes of the even n n-gon 

waves.  

All n-gon waves with an even n on the inside of a unit 

circle with start phase φ = 0 and unit circle exponent Ω = 

0 have the same frequency as the unit circle wave. If the 
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unit circle exponent is changed to 1, so that the polygons 

lie on the outside adjacent to the unit circle, they have 

different frequencies.  

All n-gon waves with an even n on the inside of a unit 

circle with start phase φ = π/n and unit circle exponent a 

= 0 have different frequencies, too.  

All of the n-gon waves with the same n inside and out-

side adjacent to the unit circle of the circlewave seem to 

show reciprocal frequencies; for instance, trigon waves 

with 1/(3/2) = 3/4 and tetragon waves with 1/√2 = √2/2, 

etc.
4
  

A scale of ascending or descending frequencies com-

prised of n-gon waves can be built with the two start 

phases and the polygons on the inside and outside adja-

cent to the unit circle as described above. The above 

mentioned semitone that is higher than the octave of the 

trigon wave is the octave of the tetragon wave with start 

phase φ = 0 and unit circle exponent Ω = 1. It is a tetra-

gon wave with start phase φ = π/n and unit circle expo-

nent Ω = 0. The scale does not ascend or descend with 

one frequency per n of a n-gon wave, it rather jumps back 

and forth between odd and even n frequencies. For in-

stance, the tetragon wave is always higher than the trigon 

wave, whether it is on the inside or on the outside of the 

unit circle. With the exception of the tri- and tetragon 

wave, a wave with odd n and a unit circle exponent a = 1 

on the outside of the unit circle is followed by a lower 

frequency of the next higher even n. With n-gon waves 

with odd n and a unit circle exponent a = 0 on the inside 

of the unit circle it is the other way round: the frequency 

of a wave with even n will be followed by a lower fre-

quency of a wave with the next higher odd n. If the n 

values of the n-gon waves are arranged symmetrically 

around the circle wave, but the start phase and the unit 

circle exponent change as described above, the frequency 

ratios seem to be reciprocally mirrored around the unit 

circle of the circle wave.  

The larger the numbers that are used for n, whether they 

might be even or odd, the closer the n-gon wave gets to 

the circle wave. It seems that even and odd n will con-

verge into a unit circle when they reach infinity. This 

raises some questions about whether the n of the unit 

circle wave is even or odd when n reaches infinity (n = 

∞), whether there are two inifinities (one for even and 

one for odd) or if there are other maybe paradox solu-

tions. Unfortunately, we are not able to give an answer to 

these questions here.  

Scales that use only odd or even numbers for n might 

jump less forwards and backwards than a scale that uses 

all or a set of even and odd numbers.  

Table 1 shows the frequencies of a unit circle scale of 

13 frequencies of one octave plus the one extra frequency 

of the tetragon wave, the start phases, the unit circle ex-

ponents, the frequencies of a twelve tone equal tempera-

                                                
4
 Although n-gon waves with an odd n seem to show almost reciprocal 

values, irregularities can be observed. These irregularities could be 

caused by rounding errors by the computer used for the calculations of 

the frequencies. As it it is not clear where they come from this will need 

some further investigation.    

ment scale, and the frequencies of the just intonation 

scale. All three scales start from 1Hz.  

A Unit Circle Scale can also contain more than one unit 

circle. The unit circles and their circle waves can be ar-

ranged geometrically derived from polygons or n-gon 

waves. For example, octaves and fourths can be derived 

from trigon waves and used as new unit circle centres 

frequencies. 

 

n φ 

 

Ω  fn-gon 

 

fequal temp 

 

just 

3 0 1 1.0000 1.0000 1.0000 

4 0 1 1.0607 1.0594 1.0666 

5 0 1 1.3416 1.1224 1.1250 

6 0 1 1.2990 1.1892 1.2000 

7 0 1 1.4218 1.2599 1.2500 

8 0 1 1.3858 1.3348 1.3333 

∞, 

unit 

0 or 

π/n 

0 or 1 1.5000 1.4142 1.4000 

8 π/n 0 1.6236 1.4983 1.5000 

7 π/n 0 1.5781 1.5874 1.6000 

6 π/n 0 1.7320 1.6817 1.666 

5 π/n 0 1.6583 1.7817 1.777 

4 π/n 0 2.1213 1.8877 1.8750 

3 π/n 0 2.0000 2.0000 2.0000 

Table 1.  A Unit Circle Scale derived from one circle 

wave. n = number of vertices or edges of the polygon, φ = 

start phase, a = unit circle exponent, fn-gon = frequency n-

gon wave, fequal temp = frequency equal temperament scale, 

just = frequency just intonation scale. All frequencies are 

in Hertz. 

 
n φ 

 

Ω  fn-gon 

 

fequal temp 

 

just 

∞, 

unit 

0 or 

π/n 

0 or 1 1.0000 1.0000 1.0000 

8 π/n π/n 1.0824 1.0594 1.0666 

7 π/n π/n 1.0520 1.1224 1.1250 

6 π/n π/n 1.1547 1.1892 1.2000 

5 π/n 0 1.1056 1.2599 1.2500 

4 π/n 0 1.4142 1.3348 1.3333 

3 0 or 

π/n 

0 or 1 1.3333 1.4142 1.4000 

4 0 1 1.4142 1.4983 1.5000 

5 0 1 1.7889 1.5874 1.6000 

6 0 1 1.7320 1.6817 1.666 

7 0 1 1.8958 1.7817 1.777 

8 0 1 1.8477 1.8877 1.8750 

∞, 

unit 

0 or 

π/n 

0 or 1 2.0000 2.0000 2.0000 

Table 2. A Unit Circle Scale derived from two circle 

waves. n = number of vertices or edges of the polygon, φ 

= start phase, a = unit circle exponent, fn-gon = frequency 

n-gon wave, fequal temp = frequency equal temperament 

scale, just = frequency just intonation scale. All frequen-

cies are in Hertz. 
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A Unit Circle Scale can also contain more than one unit 

circle. The unit circles and their circle waves can be ar-

ranged geometrically derived from polygons or n-gon 

waves. For example, octaves and fourths can be derived 

from trigon waves and used as new unit circle centres 

frequencies. 

Table 2 shows the frequencies (starting from 1Hz) of a 

unit circle scale of 13 frequencies derived from two unit 

circles. One unit circle is halve the size of the other, i.e. 

two circle waves with a frequency ratio of one octave. 

The parameters and scales in this table are the same as in 

table 1, but as can be seen from the table, the values for n, 

φ, Ω, and fn-gon  are different. The frequency ratio compari-

son to the other scales (equal temperament, just intona-

tion) shows other parts of the frequency properties of a 

Unit Circle Scale than the one in table 1.  

4.2 Unit Circle Recursion Scales 

The following recursive process is used to generate Unit 

Circle Recursion Scales: 

If the incircle of a polygon is used as a new unit circle 

for another polygon inside this circle, and this process 

will be repeated for a number of times, a musical scale 

can be generated with the derived n-gon waves of each 

circle. The same method can also be inverted so that the 

unit circle or circumcircle of one polygon becomes the 

incircle of another polygon, etc.  

Mathematically this means that the Unit Circle Expo-

nent Ω in equation (7) is increased or decreased for each 

new frequency of the musical scale. Decreasing Ω in-

creases the frequency and increasing Ω decreases the 

frequency. 

       Ωn+1  =  Ωn  ± 1    (8) 

If a trigon wave is used for each step of the process, a 

scale of octaves is generated. If a tetragon wave is used, a 

scale of tritones is produced. It can be concluded that the 

larger n is (the number of vertices or edges) the smaller 

are the steps of the recursion scale. Figure 9 illustrates an 

Unit Circle Recursion Scale with trigons. 

       

Figure 9. A trigon Unit 

Circle Recursion Scale of oc-

taves. 

4.3 Unit Frequency Ratio Recursion Scales 

The same recursive process as for Unit Circle Recursion 

Scales can be applied to the frequency ratio of a unit 

frequency. The frequency of a n-gon wave becomes the 

new unit frequency for the next n-gon wave frequency 

calculation, etc. It can also be described as powers of the 

ratio of the circle wave wavelength to the n-gon wave-

length. This corresponds to an increment or decrement of 

the Frequency-Ratio Exponent ε in equation (7). Decreas-

ing ε also decreases the frequency and increasing Ω also 

increases the frequency. 

            εn+1  =  εn  ± 1     (9) 

If again a trigon wave is used for each step of the pro-

cess, a circle of fourths is generated due to the frequency 

ratio of 4:3 of a trigon wave and a unit circle frequency. 

For even numbered n-gon waves the start phase has to 

be set to φ = π/n. Otherwise, the recursion frequency ratio 

will always be 1.  

If a tetragon wave is used and its start phase is set to φ 

= π/n, a scale of tritones is produced. Note that this is the 

same scale as the Unit Circle Recursion Scale of tetragon 

waves.  

Again, as with the Unit Circle Recursion Scale, the lar-

ger n is (the number of vertices or edges) the smaller are 

the steps of the recursion scale. Figure 10 shows the Tri-

gon Unit Frequency Ratio Recursion Scale of a circle of 

fourths and the Unit Frequency Ratio Recursion Scale of 

an octagon wave 

 

  

Figure 10. A trigon Unit Frequency Ratio Recursion Scale 

of a circle of fourths (left) and an octagon Unit Frequency 

Ratio Recursion Scale (right). 

4.4 Edge Scales 

Edge Scales can be constructed if the number of edges 

and vertices of the regular polygon stay the same, but the 

number of edges of the derived n-gon wave is increased 

or decreased.  

In this paper, the variable l is used for the number of 

edges because this is the first letter in the word “line”. 

Actually, the line is the edge of a polygon, hence the 

Edge Scale could also be called the L Scale.  

Edge scales show a periodic behaviour. If l is a multiple 

of n, the frequency is the same. If it is not a multiple of n 

and if l is increased, the frequency decreases. 

The start phase (φ) makes a difference for even num-

bered n-gons. If φ = π/n, two steps of the scale are the 

same because of the symmetry of the vertical edges. If φ 

= 0, all the steps of the scale are different.  

If a unit frequency is used, Edge Scales seem to change 

the partial frequencies of a n-gon wave spectrum.  

Figure 11 illustrates an Edge Scale of a hexagon with φ 

= 0. 

                                 

       

Figure 11. A hexagon Edge Scale or L Scale 

with φ = 0. 
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4.5 Stellation Scales  

Stellation Scales are derived from a regular polygon and 

its stellations.  

If different q values in the Schläfli symbol{n/q} of a 

regular polygon are used to build its stellations, a corres-

ponding scale can be generated.  

For instance, if n is 12 and φ = 0, the scale is comprised 

of a dodecagon wave, 5 star polygon stellation waves, 

and their two basic start phases 0 and φ/n. That makes a 

total of 12 different n-gon waves with only the half of 

them with an individual frequency. Figure 12 shows 6 n-

gon waves as dodecagon wave stellations of the scale. 

Note that three of these n-gon waves are derived from 

regular polygons of star figures, only one is derived from 

a dodecagram, and one n-gon wave is a straight horizon-

tal line that is not depicted in full length.  

    

    

    

     

     

    …  

Figure 12. This figure shows six n-gon waves of a 

dodecagon Stellation Scale. Three of these n-gon 

waves are derived from regular polygons of star fig-

ures, only one is derived from a dodecagram. Note 

that one n-gon wave is a horizontal line and it is not 

depicted in full length. 

4.7 Phase Rotation Scales 

If the start phase (φ) of a regular polygon or a star poly-

gon is increased or decreased by 2π/n, so that the start 

phases become multiples of 2π/n as shown in equation 

(10), scales can be constructed with start phases that seem 

to rotate around the incircle corresponding to the vertices 

of the polygon.                 

               n          

  φ(k) =  Σ k(2π/n)                (10) 
                   k = 0 

If a regular polygon is used, the value of l (lines that 

connect the vertices of the polygon) is equal to n (number 

of vertices of the polygon), and q (the stellation of the 

star polygon) is 1, a phasing effect occurs. If l is not equal 

to n, a scale of different frequencies can be constructed.  

From a star polygon phase rotation scales can be con-

structed in the same way as with regular polygons. 

Other incremental values for φ that do not match the 

vertices of a polygon can be chosen, too, for example 

logarithmic values. Figure 13 shows four of twelve n-gon 

waves of a Dodecagram Phase Rotation Scale with n = 

12, q = 5, and l = 6. 

      
     

      

Figure 13. Four of twelve n-gon waves of a dode-

cagram Phase Rotation Scale with n = 12, q = 5, and 

l = 6. 

4.8 Intervals and Chords                                    

It is possible to build intervals or chords from the above 

described scales. If n-gon waves are derived from the 

same unit circle, some intervals seem to be suitable to be 

used in a harmonic context. Because this needs some 

further investigation, we can only give a few examples at 

the moment. For instance, trigon and pentagon, trigon 

and heptagon waves, intervals of the nonagon Unit Circle 

Recursion Scale or the pentagon Unit Frequency Ratio 

Recursion Scale can all be used to build chords.  

Some of the intervals or chords that can be built from 

the frequencies of a Unit Circle Scale seem to resemble 

the ones from the equal temperament or just intonation 

scale.  

For instance, the interval of a tetragon wave and hexa-

gon wave (ratio = 1.2246) is close to a major third inter-

val of the equal temperament scale (ratio = 1.2599). The 

ratio of the tetragon wave and the circle wave of a Unit 

Circle Scale is equal to the tritone of the equal tempera-

ment scale: √2 = 1.1412.  

With a ratio of 1.3333 the interval of the circle wave 

and the adjacent trigon wave inside the circle is the same 

as a perfect fourth, or with a ratio of 1.5 for an adjacent 

trigon wave outside the circle a perfect fifth of the just 

intonation scale.  

5 EVALUATION 

5.1 Aliasing, Low Frequencies, Computation Time, 

Software Applications, and Recordings 

In this research, angular n-gon waves have mostly been 

used, chiefly due to a desire to test both their acoustic 

properties and their graphic representation. Although the 

angularity of the waveforms introduces aliasing, it is the 

angularity that contributes to the computation of geomet-

ric proportions that can be used in an acoustical or musi-

cal context; for instance, scales derived from geometric 

proportions of regular polygons as described in section 4 

of this paper. N-gon waves can be used as waveforms for 

additive synthesis, subtractive synthesis, and modulation 

(experiments with additive n-gon wave synthesis and 

modulation were conducted by the authors but are not 

documented in this paper). 

The aliasing is introduced by the sharp edges of the 

computer generated waveforms. The high frequency 

partials of a n-gon wave frequency spectrum that are used 
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to generate sharp edges can be higher than the Nyquist 

frequency. To avoid aliasing these frequencies could be 

filtered out with a low-pass filter.  

Sometimes very low frequencies might occur while 

working with n-gon waves. A high-pass filter can be used 

to filter them out or they may be used as modulation 

signals. 

An implementation of  a n-gon wave oscillator  algor-

ithm (programming language C++) was run on a laptop to 

test and estimate the computational time (i.e. the time 

complexity) of the algorithm. It appeared that the compu-

tation time
5
 of a star polygon wave (the drum sound ex-

ample in section 3.5) with Schläfli symbol {420/209}, φ 

= π/2, and with a frequency of 0.25Hz was on average 

about 0.0029 seconds. In the worst case it was 0.0063 

seconds, which is about 160.875Hz, or 9’652.51bpm 

(beats per minute). This indicates that the computation of 

this low frequency n-gon wave was about 643.5 times 

faster than the frequency of the wave itself. The computa-

tion time (about 0.0003 seconds or 3’333.3333Hz) of the 

same waveform with a higher frequency of 4048Hz 

turned out to be slower on average than the frequency of 

the wave itself. The computation time average of 1000 

test waves with octave frequencies (2
x 

Hz) from 1Hz to 

16’384Hz and variable settings for n and q was slightly 

higher than approximately 0.0003 seconds (about 

2’989.3132Hz or about 179’358.7923bpm). This compu-

tation time average appeared to figure as a performance 

limit of the n-gon wave algorithm that was run on the test 

computer. The limitation needs to be considered if the n-

gon wave algorithm is implemented in software applica-

tions. The implementation  of the tested algorithm could 

probably also be optimised, for instance, with inline as-

sembly code. However, as this computation time limit is 

higher than most tempos used in common sequencer 

software, it seems that the algorithm can be implemented 

in such software applications. 
6
 

To test the computational accuracy and potential data 

loss of the output of prototype n-gon wave synthesisers 

recordings were made with common recording software. 

Figure 14 shows a prototype n-gon wave synthesiser 

output recording of a tetragon wave with φ = π/4, and 

hexagon wave with φ = π/6, i.e. both with φ = π/n.  The 

recording was made with Audacity
7
. It appeared that the 

recordings of an online prototype n-gon wave synthesiser 

were occasionally distorted or interrupted when the re-

cordings were made on the same computer as the online 

synthesiser software was run on. It is not clear whether 

these issues were due to the implementation, the speed of 

the internet connection, or due to the speed of computa-

tion available on the test computer. The online synthe-

siser performed well if no recording software was used 

                                                
5
 The results are rounded to four decimal places. 

6
 For instance, the online “N-gon Wave Synthesizer Sequencer” men-

tioned in the introduction of this paper combines a n-gon wave oscilla-

tor and a sequencer. (A Max and/or Pure Data external is currently in 

development by the authors). 
7
 The Audacity recording freeware can be found here: 

http://audacity.sourceforge.net/ 

on the same computer at the same time. With the offline 

versions of the prototype n-gon wave synthesisers there 

appeared to be no such issues so far. It was possible to 

run offline n-gon wave synthesiser software and common 

recording software on the same computer (laptop) while 

algorithmically  and/or manually changing the synthesiser 

parameters at the same time.  

 

Figure 14. A recording with Audacity of tetragon and hexagon 

waves with φ = π/n generated with a protoytpe n-gon wave 

synthesiser. 

6 CONCLUSIONS 

As documented in this paper, n-gon waves can be used as 

a means to approach the expression of geometrical pro-

portions and relations of regular polygons and star poly-

gons in sound. Although aliasing might occur some geo-

metric relations are still audible, and the waveforms may 

be used for additive synthesis, subtractive synthesis, and 

modulation. N-gon waves offer a variety of musical 

scales, harmonic relations, timbres, and other properties 

to experiment with. Frequency, amplitude, and phase can 

be used as independent variables or can additionally de-

pend on one another through the geometrical properties 

of regular polygons. N-gon waves can be played in an 

equal temperament scale. However, with their inherent 

geometrical properties they can also be used as a means 

to explore other possibilities in sound. 
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