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ABSTRACT

This paper outlines a unique a gorithmic modd of chorale
synthesis based on mathematics, speci! Ically on algebra
and geometry. There were four digtinct stages in its
development, 1. algebraic formule (1978) for the
quanti " Ication of the harmonicity of pitch intervals and of
the rhythmic relevance or indispensability of the pulsesin
a multiplicative meter, 2. the computer program package
Autobusk (1986) using the harmonicity formula for the
interpretation of a pitch set or musical scale as a ratio
matrix, 3. multidimensionally scaling (2001) a scale ratio
matrix into a Cartesian chart of two or more dimensions
and 4. chorale synthesis (2012) by rules based on the
multidimensional scaling of pitch sets and on the pulse
indispensability formula. These four stages will each be
outlined in a separate section.

1. INTRODUCTION

In 1975, while preparing to compose a large microtonal
piano piece (see section 2), | was faced with the problem
of how to treat quarter-tones harmonicaly. Hindemith [1]
had referred to the harmonic relevance of twelve-tone
chromatic intervals but not to intervals outside this set.
Partch [2] lised and commented on severa just-intoned
intervals but not in the context of functional harmony.
But both authors explicitly based their investigations on
interval ratios and on prime numbers contained therein. It
soon became clear to me that | would have to do my own
investigations along these lines.

2. ALGEBRAIC FORMUL A&

This section concerns theoretical work done in 1975-78
in connection with the writing of Cogluotobiisigletmes, a
thirty-minute work for microtonally retuned piano. My
aim was to determine — in the micro- and macrotempora
(frequency and time) domains, respectively — the extent
to which an dement (pitch or pulse) of a scale or meter
contributes to setting up a tonal or metric [eld of
speci [Ic strength. The eld-strength would be controlled
by the gradient of a dtraight line in a two-dimensional
space in which the x-axis represents the said contribution
in terms of interval harmonicity or pulse indispensability
and the y-axis the probability of the element in a tochas-
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tic compositional environment. A horizontal line would
yiedd atonality/ametricism with al eements egually
probable; increasing the gradient would raise the "eld-
strength — see Figure 1.

7era ficld steensth

B

decreasing indispensability (with metric field strength) &/or harmonicity (with tonal field strength)->

increasing probability of pulses &/or pitches >

Figure 1. A straight line, its gradient determining tonal
or metric | |eld strength by relating element probabilities
tointerval harmonicity or pulse indispensability.

2.1 Numerical Indigestibility, Interval Har monicity

For this piece, the notes D, E, F-sharp and B are retuned
in every octave of the piano a quarter-tone downwards. In
this tuning, a total of 84 heptatonic scales containing
threeinterva sizes— whole steps (3, 4 or 5), half steps (0,
1 or 2) and three-quarter steps (0, 2 or 4) — were found,;
other interval sizes were not used. In order to study the
harmonic properties of these scales, it was necessary to

rst sudy their component intervals. | turned to the old
adage attributed to Pythagoras, that the smaller the num-
bers forming interval ratios (e.g. 1.2, 2:3, 3:4, 3.5 €tc),
the more harmonic these are. 2% millenia later, Partch
was practicaly stating the same thing. However, it did
not make sense to me that intervals like 6:7 and 7:8, basi-
cally unused in pre-20™ Century Western (or even Indian)
Music, be more harmonic than 8:9 or 9:10, two well-
known whole tones. | directed my attention to the primes
contained in the ratio numbers and came up, inspired by
Euler’s ¢ or function, with a formula for what | termed
numerical indigestibility: the larger, “less digestible”
primes inhibit the intervals’ harmonicity, the formula for
which | based on that for indigestibility. Harmonicity, a
psychological phenomenon, has been long confused with
physiological sensory consonance, itself deriving from
the consistency of the basilar membrane as described in a
legendary text by Plomp and Levelt [3]. The formula for
indigestibility and harmonicity can be seen on the next
page in Figure 2, with tangible results in Table 1. These
items were [rst published in [4] and most recently in [5].
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Figure 2. Formule for the indigestibility & of whole number N
(left) and the harmonicity H of interval ratio P.Q (right, Q>P).

N &(N) Interval-  Prime Decomposition Number-
size (Ct) 2 3 5 7 ratio Harmonicity

; ?'000000 0000 0 0 0 0 11 +wo
-000000 70672 -3 -1 +2 0 2425 +0.054152
3 2666667 | yqioag 44 o1 -1 0 1516 -0.076531
4 2000000 | ygr404 41 -2 +1 0 910 +0.078534
5 6400000 | ,44010 -3 42 0 0 89  +0.120000
6 3666667 | ,31474 43 0 0 -1 78  -0.075269
7 10285714 | yi0871 -1 -1 0+ 67  +0.071672
8 3000000 | 904435 45 -3 0 0 2732 -0.076923
P 5333333 | qi5441 41 #4110 56 -0.099338
10 7400000 | 486314 -2 0 +1 0 45 +0.119048
118181818 |\ 4580 -6 +4 0 0 64:81 +0.060000
124686667 | 455933 45 g -2 0 25132 -0.056180
13 22153846 | 445084 g 42 0 -1 79  -0.064024
T4 11285714 | 450081 4+ 0 +1 1421 +0.058989
]5 3'066667 498045 +2 -1 0 0 34  -0.214286
6 4000000 | gi0551 2 43 -1 0 20:27 -0.060976
568717 -1 -2 +2 0 1825 +0.052265
582512 0 0 -1+ 57  +0.059932
590224 -5 +2  +1 0 32:45 +0.059761
609.776 +6 -2 -1 0 4564 -0.056391
617488 +1 0 +1 -1 710 -0.056543
680.449 +3 -3 +1 0 27:40 +0.057471
701955 -1+ 0 0 23  +0.272727
729219 +5 -1 0 -1 21:32 -0.055703
764916 +1 -2 0+ 914  +0.060172
772627 -4 0 42 0 1625 +0.059524
792180 +7 -4 0 0 81:128 -0.056604
813.686 +3 0 -1 0 58  -0.106383
884359 0 -1 +1 0 35  +0.110294
905.865 -4 +3 0 0 1427 +0.083333
933.129 42+l 0 -1 712 -0.066879
968.826 -2 0 0 +1 47  +0.081395
996090 +4 -2 0 0 916 -0.107143
1017596 0 +2 -1 0 59  -0.085227
1088.269 -3 +1 +1 0 815 +0.082873
1129.328 +4 +1 -2 0 2548 -0.051370

1137.039 —1 +3 o 14:27  -0.051852

1200.000 0o 12 +1.000000
Table 1. Theindi g&stlbillty of the natural numbers 1-16
(boxed, left) and al intraoctavic intervals upwards of
absol ute harmonicity threshold 0.05.

The 84 scales of Cogluotobiisigletmes were now tuned to
intervals taken within a [1xed tolerance from a table such
as the one above while lowering the harmonicity thresh-
old to include the prime number 11. The tuning was used
to evaluate harmonicities which engendered probability
values as shown in Figure 1. Table 2 shows an excerpt of
the tuning as published in [4].

SCALE I II 111 v v VI VII
LC D-E-FiG A A#] 1 35/32 100/81 25718 3/2 5/3 16/9
CD-E~-F+B A AH#C 1 171 9/8 S/4 11/8 14/9 18/11 1176
CE-F+8 A A#C D-J /1 9/8 1179 11/8 16/11 18711 /5
CF+G A A#C D-E-) 171 27/2% 11/9 ?/7 36/25 128/8) 16/9
EG A AHC D-E-F+] 11 ?/8 .2 4/3 36/25 81/%0 1176
LA A#C D-E-F+G ) 1/1 16715 32727 9/7 36/25 81/350 1679
L[A%C D-E-F+G6 A 3] 1/1 9/8 100/81 25/18 25716 22716 15/8
CC D-E-F+G & B-] /1 27725 1179 11/8 372 27/16 1176
CD-E-F+G A B~C ] 1/1 /8 81764 25718 25/16 27716 $0/27
LE-F+G A B-C D-1 11 9/8 100/81 25/18 3/2 18/11 ?/5
{F+6 A B-C D-E-] 1/1 27/2% 1179 4/3 36/25 124/81 1679
G A B-C D-E-F4] 171 9/8 1179 4/3 36725 81/50 1176
LA B~C D-E~F+6 1] 171 27/2%  32/27 ?/7 36/25 81/50 16/9
CB-C D~E-F+G A ] /1 27725 32727 a/3 372 81/50 1176

Table 2. Tuning of 14 of 84 scales as used in the piano
piece Cogluotobiisisletmesi (1978) — the [Irst seven and
the last seven each belong to a common cyclic mode.
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2.2 Pulse Indispensability

Rhythms in Cogluotobiisisletmesi were also computed by
the method outlined in Figure 1. A total of six metersin
14 tempi ranging from MM 60 to 135 were taken for the
piece, each meter denoted by multiplicative strati[ | cation,
e.g. “2x5” meaning 2 beats of 5 pulses each. A system,
algebrized as a formula [6] and computer-programmed,
(see below) allots each pulse of each meter a unique in-
dispensability value ranging from zero to one less than
the number of pulses, e.g. for 2x5: [90634817 3 5] —
the bigger the number, the more indispensable the pulse.
The indispensabilities, converted into probabilities, made
rhythms with random numbers. Figure 3 shows the three-
layered meters 3x2x2, 2x3x2 and 2x2x3 (better known as
314, 813 and 1/16) With pulse indispensabilities.

.ui—. -] B
—u = § -r
ool ol ol

Figure 3. Pulse indispensabilites simultaneously shown
as numbers, bar charts and shading for three meters on
the third level of gtrati Jcation (with 12 pulses each).

o

3. AUTOBUSK

From 1986, the above-mentioned formulee and related
algorithms were programmed into the software package
Autobusk running on an Atari ST computer, in which
twel ve parameters are applied to scales del/ned in cents
and meters as dtrati[Ications. Figure 4 shows a screen
shot of the main program. The package together with a
tutoria [7] can be fredy downloaded from Mainz Uni-
versity:

<http://www.musi kwi ssenschaft.unimainz.de/A utobusk/>
The Cirg piece composed with Autobusk was variazioni e
un pianoforte meccanico (1986) for pianist and player
piano. In 2000 Autobusk was declared compl eted.

BRESRECH - crarion 2ecorm 2.m o s Tos 210

i
IDP metre input file: YZ.IDP - metres: 9 —<n2sz>

HRM scale input file: WZ.HRH - scales: 3

: UES_ZBEB.PRK

& lit]scale numbers=
netre PR

T outset pulses- |5 1
7. metriclarity [0-241= |2} )
§2. pulse length [1-2551= ({4 FULY

=. eventfulness [B-241= | 2 H

2. event length [1-2551=( 2 2
=. melody scope [B-1271=| § 5
s &. tonic pitch [8-1271= [CkE Ckk
7. chordal weisht [1-31=( 1 1

=. harmoniclarity [B-121= (1 42
i =.pitch centre [8-1271= [Eb6 Dbk
pitch range [8-1271=| % 9
11. dunamics [8-1271= (7 8k
attenuation [8-1271=
sound/controller [1-1271=
DI channels [8-161=

L& ]
speed L[OA/0AZ0 4007
start tine E
(8 stopped at RYE
press <!> to exit, <RET> to start - PREMs alterable

Figure 4. Screen shot of Autobusk main program.
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One of Autobusk’s peripheral programs, “HRM?”, derives
a two-dimensional matrix of ratios from a musical scale
delned in cents, e.g. the one-octave chromatic scale in
Figure 5, with three constraints. minimum harmonicity,
nominal tolerance (the width of a Gaussian bell placed on
each scale degree to damp outlying ratios’ harmonicities)
and tuning aternatives (the number of ratios competing
to represent each scale degree, e.g. 5/4 and 81/64 for the
major third, 400 cents). The overall harmonicity for every
possible tuning given the number of alternativesis evalu-
ated (e.g. 28 tunings for 2 alternatives in an 8-note major
scale) and the one with the highest value is selected.

Scale degree: 1 2 3 4 5 6 7 8 9 10 1" 12 13
Inputsize (Ct): o} 100 200 300 400 500 600 700 800 900 1000 1100 1200
Tuning: 17 16/15 9/8 65 5/4 4/3  45/32 3/2 8/5 513 95 15/8 211
Deviation (Ct): o] +12 +4 +16  -14 -2 -0 +2 +14  -16 +18 -12 0
Note name: C Db D E E F B G Ab A By B c
12 tone matrix:
2— 3— 4— 5— 6— 7— 8- 9— 10— - 12— 13—
16/15  9/8 6I5 5/4 413 45/32 32 8/5 5/3 9/5 15/8 2n -1
-D.077 +0.120 -0.099 +0.119 -D.214 +D.06D +0.273 -0.106 +0.110 -D.OBS +D.083 +1.000
135/128 9/8 75164 514 675/512 45/32  3/2 2516 272(16  225/128 15/8 —2
+0.047 +0.120 +0.047 +0.119 +D.034 +0.060 +0.273 +D.06D +D.0B3 +D.04D +0.083
16/15 109 3227 Si4 413 64/45 40127 8IS 5/3 1819 —3
—0.077 +0.079 -0.077 +0.119 -0.214 -D.056 +0.057 -0.106 +0.110 -0.107
25/24 10/9 75/64  5/4 413 2518 3/2 25/16 53 —4
+0.054 +0.079 +0.047 +0.119 -D.214 +0052 +0.273 +D.06D +0.110
16/15 978 615 32/25  4f3 3625  3/2 8IS -5
-0.077 +0.120 -D.099 -0.056 -0.214 -0.050 +0.273 -0.106
135/128 9/8 6/5 5/4 27120 45/32 32 —6
+0.047 +0.120 -D.099 +0.119 -D.D&1 +D.06D +0.273
16/15  256/225 32/27 3225  4f3 64145 -7
-0.077 -D.038 -0.077 -D.O0S6 -0.214 -D.0S6
16/15 10/9 615 5/4 413 —8
-0.077 +0.079 -D.OP9 +D.119 -0D.214
2524 9/8 75/64 514 —9
+0.054 +0.120 +D.047 +D.119
27225 98 65 —10
-0.048 +0.120 -D.099
25/24 10/9 -1
+0.054 +0.079
16/15  —12

-0.077

Figure 5. Ratio-harmonicity matrix of a chromatic scale
octave asinterpreted by program Autobusk/HRM.

As in Cogluotobiisisletmesi, the harmonicity values are
then converted into probabilities for the random selection
of pitches.

4. MULTIDIMENSIONAL SCALING

Introduced about a half-century ago, multidimensional
scaling is, to quote Wikipedia, “a means of visualizing
the level of similarity of individual cases of a dataset.”
Writing “proximity” for “similarity”, this means that if
we know for instance the geographical distances between
sdlected cities, it would be possible to construct amap in
dimensions two or more (e.g. a globe) with the cities in
the right place related to each other, except for the map
being possibly rotated by a certain unpredictable angle or
even laterally reversed.

In 2001, regarding harmonicity as a measure of the
harmonic proximity of notes forming scales, | began to
construct “maps” of the scales. Figure 6 shows a mapping
of the chromatic scale matrix in Figure 5. Note the close
proximity of the keynote (1:1) and the octave (1:2), and
the mutually remote minor 2™ (15:16) and augmented 4™
(32:45) or major 61 (3:5) and minor 71" (5:9).
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15:16
5:8
56 3:4
) 1:2
9 141
2:3 3:5
8:9 4:5
8:15
32:45

Figure 6. A multidimensionally scaled map of a chromatic
scale octave as interpreted by Autobusk/HRM.

5.CHORALE SYNTHESIS

To quote Wikipedia again, a chorale “is a melody to
which a hymn is sung by a congregation in a German
Protestant Church service. Thetypical four-part setting of
a chorale, in which the sopranos (and the congregation)
sing the melody along with three lower voices, is known
as a chorade harmonization. In certain modern usage, this
term may include classical settings of such hymns and
works of a similar character.” Probably the most famous
chordes in music history were written by J. S. Bach.
While making visual pitch maps by multidimensonal
scaling, | wondered what the Bach choraes would ook
like if viewed in such maps. Accordingly, in 2012, |
nally got down to examining the chorale Zeucht ein zu
deinen Toren (“Oh enter, Lord, thy templ€”) in this light.
For a multidimensional scaling the piece would have to
be tuned to just-intoned ratios (which | did manually),
and the harmonicities determined by Autobusk. Figure 7
shows the chorale opening together with the ratios found.
Note the four pairs of identical looking but differently
tuned notes G, B in the bass staff and B, C in thetreble.

12 3 4 5 6 7 8 910 11 1213141516 17 18 19
4 Lod ol S ey T
%(' o — > - — s — s
F—HE— farort s =
IR o G T | ==
&/5) 12
&ﬂ 6@_ ol 1] 1 wwy 1| 978 ma &3 g - 4 @:
v » ﬁgﬁ;: y iy S § 2
¥ ; i e r—
e
I 1sne S 50 89 89 89 [49l516 ororae 3 Ty
172 2
A All 26 notes > —_r—

5N

)
r)

Y
v )
+

4012 273 V4 45 56 RS 9/1015/16 1/ 10/9 98 &5 473 32 &S 53 16/9 158 21 209 94 6427 12/5 8/3 31
o® &

-3

"
» o fio
& #

N

L1 L

Figure 7. A manually tuned rendition of the J. S. Bach
chorale Zeucht ein zu deinen Toren (opening bars).
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Figure 8 shows the multidimensionally scaled map of the
Bach chorale opening bars’ pitch materia as manually
tuned. The [Irg chord is outlined in blue. The four pairs
of identical looking differently tuned notes are numbered
with lower case Roman numerals and are mutually quite
remote.

G3(ii)
B3(ji)
BA(ii)
8 G
F#3
Fit4 D3
D4
D5
G2
B3(i) 63()
B4(i) G4

cs(i)

Figure 8. Multidimensionally scaled manualy tuned
pitches of the J. S. Bach chorale Zeucht ein zu deinen
Toren (opening bars).

Every chord in the chorale was delineated asin Figure 8,
and the images, one per chord, converted into a music-
synchronized video. After intently observing the video, |
came up with two simplerules for synthesizing a chorde:

1. The overall harmonicity of a chord randomly
chosen from a multidimensionally scaled map is
proportional to the indispensability of the pulse
it occupies.

2. Every chord and the one succeeding share anote
in common.

With these rules in mind, | began to work on a commis-
sioned piece for computer-driven pipe organ entitled
Fiir Simon Jonassohn-Sein (the organ in question was
housed in Cologne in the church of St. Peter, whose orig-
ina name was Simon son of Jonas). The pitch material
consisted of 79 just-intoned intervals spread over the full
4%-octave range of the organ, their ratios being prime-
limit 7 (i.e. containing factors up to 2*¢, 353, 5*! and 7*1),
and the minimum harmonicity was set at 0.07. Even
though the organ’s 54 half-steps were tuned to the regular
12-tone chromatic scale, the composition of the work was
effected as though the pitches were just-intoned; this cor-
responds to the general practice of composing 12-tone
tempered music with the harmony (but not the sound) of
just intonation in mind.

Figure 9 shows a multidimensiondly scaled map of the
79 pitches expressed as ratios, offering a total of 79079
different triads for random selection. Note the severa
individual four-note octave-chains.
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Figure 9. 79 multidimensiondly scaled pitches sel ected
for the organ piece Fiir Simon Jonassohn-3ein.

The meter was chosen for the piece wasa dow 3x2, the
half-note pulse indispensabilities being [5 0 3 1 4 2].
Using the method outlined above, four chordes were
composed, partly interspersed and partly synchronized
with Autobusk “improvisations” in the same harmonies
as the chorales and in meters 2x2x2, 3x2x2, 2x3x2,
2x2x3, 2x2x2x2 and 2x2x2x3, whereby the fastest pulse
is a 16"-note. Even though the work was performed in
equal temperament, Figure 10 shows Chorae 1 with just-
intoned ratios and cent deviations with which Fiir Simon
Jonassohn-Sein was composed.
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Figure 10. Chorae 1 of Fiir Simon Jonassohn-Sein.
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6. SUMMARY

Unlike work done by many esteemed colleagues in the
pardld [eld of musicology, Fiir Simon Jonassohn-Sein
does not attempt to re-create an existing style. Its idiom
indeed sounds vaguely familiar, because of the tonal and
metric elements employed. At the same time it dso
sounds somewhat singular, because of the unexpected-
ness of many of the chord changes. All functions and
techniques described, from indigestibility, harmonicity,
and indispensability to chorale synthesis, were devel oped
as purely compositional tools, from Cogluotobiisisletmesi
and variazioni to the present. It is my hope that this paper
— in addition to describing a continuous line of thought —
also conveys my fascination by the extent to which solely
mathematical, non-empirical means can synthesize an
esthetically relevant music.
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