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ABSTRACT

Languages for music audio processing typically offer a

large assortment of unit generators. There is great dupli-

cation among different language implementations, as each

language must implement many of the same (or nearly the

same) unit generators. Csound has a large library of unit

generators and could be a useful source of reusable unit

generators for other languages or for direct use in applica-

tions. In this study, we consider how Csound unit genera-

tors can be exposed to direct access by other audio process-

ing languages. Using Aura as an example, we modified

Csound to allow efficient, dynamic allocation of individ-

ual unit generators without using the Csound compiler or

writing Csound instruments. We then extended Aura using

automatic code generation so that Csound unit generators

can be accessed in the normal way from within Aura. In

this scheme, Csound details are completely hidden from

Aura users. We suggest that these techniques might elim-

inate most of the effort of building unit generator libraries

and could help with the implementation of embedded au-

dio systems where unit generators are needed but a full

embedded Csound engine is not required.

1. INTRODUCTION

Csound [1, 2] is a Music-N-based computer music system

with a long history. Over time, it has been recognized that

the Csound functionality could be valuable in forms other

than the monolithic Csound command-line application. An

embeddable engine evolved that can be used by desktop,

mobile, and web-based applications. Especially with the

continuing growth of Csound opcodes, the equivalent of

Music-N unit generators, Csound offers a large library of

signal processing elements. While these are available by

using Csound as a whole or through an embedded Csound

engine, there are cases where one might like to use indi-

vidual opcodes or access the opcode library through alter-

native audio frameworks.

This paper will discuss research into the use of Csound

opcodes within the distributed, realtime object and mu-

sic system, Aura [3]. We will analyze how opcodes work

within Csound, see what is necessary to use them outside
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of Csound, and show steps taken to recontextualize op-

codes to function within Aura. Finally, we will explore

future directions for this work and how it can be useful

for research and music systems design. The main result

of this work is a new interface that exposes direct access

to Csound opcodes and the wealth of signal processing re-

sources they represent. 1 We also offer a detailed descrip-

tion of the Csound opcode and instrument architecture.

2. RELATED WORK

Previous research has taken a different approach to the

problem of unit generator code reuse. Several efforts have

been made to create abstract representations of the sig-

nal processing within unit generators, allowing code gen-

erators to convert these high-level descriptions into im-

plementations. The description can be as simple as a set

of parameters and state variables and an inner loop writ-

ten in C. For example, the RATL system [4] can generate

unit generators for at least 4 different systems. Faust [5]

is a functional programming language for signal process-

ing that can be compiled into C++ implementations for a

dozen or more systems. Finally, plug-in standards such as

Steinberg’s VST and LADSPA [6] provide a standard API

for dynamically loadable audio signal processing modules.

However, these modules typically have higher overhead

than unit generators and may have graphical interfaces, so

they usually contain larger building blocks such as entire

virtual instruments.

3. ANALYSIS OF CSOUND OPCODES

Csound’s system design is based on two key abstractions:

Instruments, which represent a time-schedulable series of

unit-generators, and Opcodes, the unit-generators that op-

erate to generate or process values. These abstractions

have a number of facets that must be considered in order to

understand how opcodes can be used either inside or out-

side of the Csound framework. These facets include con-

text, definition, allocation, initialization, performance, and

destruction.

1 Csound 6.02.0 and Aura 4 were used for this research. Their
project pages are available at http://www.github.com/csound/
csound and http://sourceforge.net/projects/aurart/,
respectively.
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3.1 Context

When a user compiles and runs Csound orchestra language

code, a series of steps take place that contextualizes each

architectural layer. First, a CSOUND structure is allocated.

This structure contains the complete state for a Csound

engine instance. This includes current definitions of in-

struments and opcodes, live instances of instruments and

opcodes, current run-time state, and management of re-

sources such as function tables. Certain properties, such

as the current sampling rate and block size (called ksmps

in Csound), are set in the CSOUND structure and referenced

globally.

The CSOUND structure also contains function pointers for

a number of functions that are used by opcodes as well as

by host programs. These include such things as allocat-

ing memory and other resources, querying state, process-

ing FFT data, and so on. It is important to note that an

opcode’s initialization and performance functions can and

do use the data and function pointers within the CSOUND

structure.

After the CSOUND structure is initialized, Csound Or-

chestra code is then compiled. This reads in definitions

of instruments and user-defined opcodes, as well as global

resources and opcodes to run once at the start of Csound’s

performance. At this point, the CSOUND structure con-

tains definitions of instruments and user-defined opcodes,

but does not yet contain any instances of those definitions.

Next, Csound score code may be read in and processed.

This information will be used to trigger events at runtime,

including instantiation or forced destruction of instrument

instances, creation of function table resources, and ending

the score (and thus stopping the Csound engine).

After all compilation is done, runtime begins. Before the

initial run, opcodes found in the global code space (com-

monly called instrument 0) are executed. Next, Csound

runs one audio block at a time. In that time, instrument in-

stances may be scheduled to be instantiated or deactivated,

and active instances will be run. Csound does not instan-

tiate, deactivate, or run opcodes by themselves, but rather

only as part of an instrument instance.

In addition to the CSOUND structure, opcodes may also

read in information from the instrument instance they are

a part of. This may include information such as if the in-

stance of the instrument was initialized by MIDI, whether

the instrument is in a held or releasing state, duration of

note, and so on. More importantly, the value that is most

often used from the instrument instance context is the lo-

cal ksmps (buffer size) for the instrument instance. As

Csound allows for setting local ksmps per instrument in-

stance, all opcodes that work with audio-rate signals use

the local ksmps value when calculating how much audio to

render or process.

3.2 Definition

Csound opcodes are defined using the OENTRY data struc-

ture, as seen in Figure 1.

The data structure is made up of:

typedef struct oentry {
char *opname;
uint16 dsblksiz;
uint16 flags;
uint8_t thread;
char *outypes;
char *intypes;
int (*iopadr)(CSOUND *, void *p);
int (*kopadr)(CSOUND *, void *p);
int (*aopadr)(CSOUND *, void *p);
void *useropinfo; /* user opcode

parameters */
} OENTRY;

Figure 1. Definition of OENTRY struct.

opname the name of the opcode as used in Csound or-

chestra code

dsblksize the size in bytes of the data structure to use with

the opcode

flags bit flag that describes resource reading/writing de-

pendencies, used by Csound’s automatic paralleliza-

tion algorithm

thread bit flag that describes if the opcode has init, k-rate,

and a-rate performance functions

outypes a string description of the types used for the out-

put arguments of the opcode

intypes a string description of the types used for the input

arguments of the opcode

iopadr, kopadr, aopadr function pointers to use for ini-

tialization and performance of the opcode

useropinfo additional data used for user-defined opcodes

An OENTRY describes an opcode, but is not the instance

of an opcode used at run-time. Instead, the information

from an OENTRY is used to create, initialize, and perform

an OPDS data structure, which is the active instance of an

opcode. This is similar to the difference between a class

definition and and object instance in Object-Oriented Pro-

gramming.

Figure 2 shows the OENTRY definition for the oscils op-

code.

{ "oscils", S(OSCILS), 0, 5, "a", "iiio",
(SUBR)oscils_set, NULL, (SUBR)oscils },

Figure 2. OENTRY definition for the oscils opcode.

3.3 Allocation

The data structure for an opcode is allocated with a size

equal to the OENTRY’s dsblksize. The value for a dsblksize

is set using sizeof() with a struct that will be passed

into the opcode’s initialization and performance functions.

Note that it is the convention in Csound that the struct

always starts with its first member being an instance of

OPDS. This allows all opcode instances to be cast to OPDS

and handled generically within the engine. Following the
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OPDS are a set of pointers, one for each of the output

and input arguments. These argument pointers are set by

Csound at runtime, using the information defined in the

intypes and outypes fields of the OENTRY. After the

pointers for arguments to the opcode come any internal

state data that the opcode will use between calls to its per-

formance function. This layout of data is shown in Figure

3.

/* oscils opcode struct */

typedef struct {
OPDS h;
/* opcode args */
MYFLT *ar, *iamp, *icps, *iphs, *iflg;
/* internal variables */
int use_double;
double xd, cd, vd;
MYFLT x, c, v;

} OSCILS;

Figure 3. Definition for OSCILS struct, used for the oscils

opcode.

Csound does not allocate memory for an opcode individ-

ually, but rather allocates a single large memory block for

an entire instrument instance. The compiler tracks the to-

tal amount of memory required for an instance of an instru-

ment. The total is a sum of the size of an INSDS struct, the

dsblksize’s of opcodes used within the instrument, and the

sizes of types for the variables defined for the instrument.

Upon allocation of the total memory block, the memory

is then divided up using pointers to addresses within the

block. As shown in Figure 4, the initial part of the memory

is used as an instance of INSDS (the data structure for an

instrument instance), the second part of the memory is used

as variables, and the last part is used as opcode instances.

INSDS Variables Opcodes

Figure 4. Memory block diagram for a Csound instrument

instance.

The information for what opcodes and what variables are

used in the instrument instance, as well as how to wire

up the memory are all gathered up during the compilation

phase. That information is stored with the instrument def-

inition (the INSTRTXT data structure). Csound will allo-

cate, then wire up the memory before any initialization of

the instrument instance occurs.

3.4 Initialization

Once the memory is allocated for an instrument and wired

together by setting pointers, Csound runs through the list of

opcodes and calls initialization functions (if the opcode has

an init-function). As shown in Figure 1, the iopadr has a

function signature where it takes in a pointer to a CSOUND

struct, as well as a void*. In general, the function used

for the opcodes will have their second argument already

cast to the type of the opcode’s data structure. Figure 5

shows the initialization function of oscils with a second

argument of OSCILS*, not void*.

int oscils_set(CSOUND *csound, OSCILS *p);

Figure 5. Function prototype for oscils opcode’s initial-

ization function.

This step in the opcode’s lifecycle is generally used to

pre-compute values that can be reused at run-time, as well

as allocate any further resources that the opcode may need.

The opcode will use values set in the input-argument point-

ers, as well as write values out to the output-argument point-

ers.

3.5 Performance

Csound’s kperf() function is used to perform one buff-

er’s worth of audio. In this time, active instances of an

instrument are performed by running through each opcode

for that instrument calling their performance function. This

will map to the opcode’s kopadr or aopadr function

pointer, depending on what pointer was set for use during

initialization. 2 The function is called with the same set of

arguments as discussed in Section 3.4.

3.6 Destruction

For opcodes, there are two aspects to destruction. The first

may be considered a form of deinitialization when an in-

stance of an instrument completes (for example, when a

note stops). In this scenario, any opcode that has registered

a deinitialization callback will have that callback executed.

The callback may be used to perform cleanup of resources

that might be valid only for that instance.

The other aspect to destruction is when the memory for

an instance of an instrument is being freed. Within a score

section, Csound does not destroy instances of instruments

when they become inactive and deinitialized. Rather, the

inactive instance is left in a pool and made available for

reuse and reinitialization. The memory for an instance is

actually freed only at the end of a score section or at the

very end of score rendering. When it is freed, all opcode

instances for the instrument are included as they are sub-

parts of the larger instrument instance memory, as shown

earlier in Figure 4.

4. RECONTEXTUALIZING THE OPCODE

By analyzing how Csound uses opcodes in Section 3, the

following points were understood to be necessary for using

opcodes outside of the Csound engine:

1. Opcodes are defined in OENTRYs. We will need to

reference the OENTRY to be able to allocate, instan-

tiate, and perform an opcode.

2 Csound has the ability to change what performance function is used
by an opcode. This is done to optimize runtime code performance.
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2. The Csound engine does not allocate an opcode’s

data structure on its own, but rather as part of a larger

block of memory for an instance of an entire instru-

ment. However, we should be able to allocate mem-

ory to use for the data structure on its own, using the

dsblcksize field from the OENTRY.

3. Besides the opcode’s data structure, opcodes may

also rely on three other data structures for operation.

These include the CSOUND, INSDS, and OPDS data

structures. As OPDS is already part of the opcode

data structure, we will not have to handle allocation

specifically outside of allocation of the opcode data

structure. On the other hand, we will need to allo-

cate an instance of CSOUND and INSDS to use the

opcode.

4. The CSOUND structure is used as an argument to op-

code’s functions, as is the opcode’s data structure.

The INSDS will have to be wired to the OPDS data

structure in the opcode. Additionally, opcode input

and output arguments are allocated outside of the op-

code data structure, and pointers are set within the

data structure to make the values from the arguments

available for use by the opcode’s processing func-

tions.

Understanding the above, we set out to create a basic set

of C++ classes that could encapsulate a single opcode for

use outside of Csound. To do this, we have to support the

entire lifecycle of opcodes–allocation, initialization, per-

formance, and destruction. We also have to honor the as-

pects of Csound’s internal design to allow the opcode to

perform as if it were running within Csound. Additionally,

we want the design to be flexible enough to function within

any desired music system context, and in particular, within

Aura.

From here, we designed two layers of classes. The first

layer is a generic Opcode layer capable of creating opcode

instances that can be used on their own. The second layer

builds upon the first to use those opcodes within Aura.

While both layers were developed within the Aura 4 code

base, the first layer was developed with the intention that it

could be used within other applications, and could even be

moved into Csound’s code base as part of its public API.

4.1 OpcodeFactory and CSOpcode

The generic Opcode layer uses two classes,

OpcodeFactory and CSOpcode. OpcodeFactory

is a utility class that handles allocation and pre-setup of

CSOpcodes. In its constructor, it allocates and initializes

a single CSOUND and INSDS that will be shared by all

CSOpcodes. The CSOUND and INSDS within

OpcodeFactory uses a ksmps block size of 32 samples,

matching the default value of Aura. 3 By creating a sin-

gle instance of CSOUND and INSDS, all opcode instances

share the same world-view as if they were part of a sin-

gle Csound instrument instance. This was determined to

3 For the purpose of research this was adequate to continue develop-
ment, though this should be made configurable for general use.

be enough to allow the target set of opcodes to function

properly when run on their own.

Outside of the constructor and destructor, the

OpcodeFactory class has one public method, shown in

Figure 6.

CSOpcode* createCsOpcode(char* opName, char*
outArgTypes, char* inArgTypes);

Figure 6. Public methods for OpcodeFactory class.

The createCSOpcode()method requires that the call-

ing code pass in the exact name, intypes, and outypes

strings that matches those of the OENTRY to use for the

opcode. This design places the responsibilty for choosing

what version of an opcode (in the case of using a poly-

morphic opcode) on the caller. We chose this design as it

worked best for the Serpent code generation system dis-

cussed further below in Section 5.4.

With the given arguments, the OpcodeFactory will

search the list of opcodes in the CSOUND structure that

matches those parameters. If a valid OENTRY is found,

createCSOpcode() calls the CSOpcode constructor

(shown in Figure 7) to create a CSOpcode instance, us-

ing the shared CSOUND and INSDS structures, as well

as the found OENTRY. The factory will then return the

CSOpcode to the factory’s calling code. If a valid OENTRY

is not found, the factory will instead return NULL.

CSOpcode(CSOUND* csound, INSDS* insds, OENTRY*
oentry);

Figure 7. Constructor for CSOpcode class.

The CSOpcode constructor allocates and sets up an in-

stance of a Csound opcode. It stores a reference to the

CSOUND structure to later pass in as an argument for the

opcode’s initialization and performance functions. It also

allocates the opcode data structure and wires it up to the

shared INSDS instance. Afterwards, using the the

OENTRY’s input and output argument type string, it deter-

mines the storage requirements in terms of Csound

MYFLT’s 4 . Once the storage requirements are calculated,

a block of memory is allocated for the total size of the in-

put and output arguments (this is held in the MYFLT* data

member of the CSOpcode class). The argument pointers

for the opcode are then configured to point to various ad-

dresses within the data block.

Note that the input and output argument types defined in

an OENTRY describe allowable types. These types may

be concrete types (i.e. i-, k-, or a-rate variables), optional

argument of type x (i.e. the type specifier "o" means an

optional i-rate variable that defaults to 0), or var-arg of type

x (i.e. the type specifier "z" means an indefinite list of k-

rate arguments). 5

4 In Csound, MYFLT is a macro defined to be either a float or double.
5 For more information about Csound’s type specifications, please see

Engine/entry1.c and Engine/csound_standard_types.c files, found within
the Csound source code.
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As some of the type specifiers may indicate types which

have different storage requirements (i.e may be of type k

or type a, the first being a single scalar value, and the latter

being a vector value), the size of the possible types with the

largest value is used. This ensures that there will be enough

memory for the type that is actually used, regardless of

which type is chosen.

4.2 Argument Handling

Once a CSOpcode is returned from an OpcodeFactory,

the memory for the opcode data structure is ready to be

used, but arguments for the opcode have not yet been set.

Pre-configuring the opcode data structure to point to pre-

allocated memory for arguments allows for two different

approaches to argument handling (the methods for these

approaches are shown in Figure 8). The first approach al-

lows setting of opcode arguments by value. Using these

methods will copy values to and from the data member of

the CSOpcode class. Because the opcode data structure

is configured to point to the values held in the CSOpcode

data member, those values will be used when the opcode

initialization and performance functions are executed.

void setInArgValue(int index, void *mem, size_t
size);

size_t getOutArgValue(int index, void* mem);
void setInArgPtr(int index, void* mem);
void setOutArgPtr(int index, void* mem);

Figure 8. Methods for argument handling in CSOpcode.

The second approach allows for directly setting the argu-

ment pointer in the opcode data structure to an address sup-

plied by the CSOpcode client. This approach assumes the

client has allocated memory and that the size of the mem-

ory is equal in size to the space requirement for the argu-

ment that the opcode expects. For example, if the opcode

expects an a-rate argument, it will expect that argument

will point to memory equal to the size of MYFLT× ksmps

block size. This approach removes the need to copy the

value if the value is already allocated elsewhere and can

lead to more efficient processing. Figure 9 shows a dia-

gram of how the two approaches handle argument pointers.

External Data

Opcode

Arg Data

CSOpcode

Figure 9. Memory diagram for CSOpcode and argument

handling.

4.3 Initialization, Performance, and Destruction

Once arguments have been set by value or by reference, the

opcode data structure is ready for initialization. CSOpcode

exposes two public methods for initialization and perfor-

mance (see Figure 10). opInit() delegates to calling the

function pointer set as the iopadr in the OENTRY, pass-

ing in the CSOUND structure and opcode data structure.

This is the same function as would be called if an op-

code was being initialized within Csound’s engine. The

opPerform() function delegates similarly to the

opInit() function, but instead uses either the kopadr

or aopadr function pointers.

int opInit();
int opPerform();

Figure 10. Opcode initialization and performance func-

tions in CSOpcode.

Once an init and/or performance function is called, the

value in the output argument pointers for the opcode may

be read with the updated value generated from the opcode.

This can be done by either retrieving the value if using

the set-by-value argument methods, or reading the memory

directly for the pointer set on the opcode data structure.

When it is time to finish using the opcode, the

~CSOpcode() destructor function will handle releasing

memory for the Csound opcode and cleaning up the inter-

nal data allocated by CSOpcode.

The OpcodeFactory and CSOpcode class design al-

lows for allocating, initializing, performing, and destroy-

ing an opcode instance, separate from its normal usage

within a Csound engine. This completes the general usage

layer of abstraction. Next we will discuss how this layer is

used with Aura’s object model and runtime system.

5. USING CSOUND OPCODES IN AURA

To use Csound opcodes in Aura, we must first analyze the

differences between the abstractions and designs. Next,

we must determine how to map concepts from Csound to

Aura. Finally, we must develop a means to bridge the two

together.

5.1 Aura Concepts

In Aura, there are two main abstractions for audio related

code: Instr and UGen. These roughly map to Csound

instruments and opcodes, but have features unique to Aura.

Similar to an opcode, a UGen defines a signal generator or

processor. Examples include oscillators, signal summers,

and filters. Also like an opcode, UGens are used as part of

an Instr. An Instr is basically a container for one or

more UGens, much like Csound instruments contain op-

codes.

Instr however, differs somewhat from Csound instru-

ments. Instrs can use other Instrs as inputs and out-

puts, and the network of Instrs can be composed to-

gether within the Audio Zone at runtime, often under the
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control of programs written in the scripting language Ser-

pent [7].

In regards to the two abstractions, the CSOpcode class

developed in Section 4 functions much like an Aura UGen,

and would be used primarily within C++ where input and

output data can easily be allocated and managed. How-

ever, to allow users to instantiate opcodes dynamically,

possibly by writing code in Serpent, we need to wrap each

CSOpcode within an Aura Instr. Rather than write

many Instrs by hand, or even generate many Instr

subclasses automatically, we developed a special Instr

class that uses both OpcodeFactory and CSOpcode to

interact with Csound, handle exchange of values between

CSOpcode and clients of the Instr class, as well as

function normally as any other Instr class would within

Aura. Additionally, we developed the appropriate Serpent

code to instantiate and use this new Instr class.

Figure 11 shows the design between the Csound, Opcode,

and Aura layers.

Csound CSOUND INSDS OENTRY

Opcode CSOpcode

Aura CsoundOpcode Serpent Wrapper

C++ Serpent

Figure 11. Architecture showing relationship between

Csound, Opcode, and Aura layers.

5.2 Code Generation

Aura uses a preprocessing script to aid development. The

preprocessor reads comments in .h (header) files and au-

tomatically generates C++ code and declarations for some

Instr methods and for remote method invocation as well

as Serpent wrapper code for instantiating the Instr. For

this project, we designed a special Instr class called

CsoundOpcode that can dynamically create a CSOpcode

at initialization.

For native Aura Instrs, there is a one-to-one mapping

of an Instr to its Serpent code wrapper. In the case of

CsoundOpcode, the decision was made to have a one-

to-many mapping. This means that the user writing Ser-

pent code would be presented with many Csound opcodes

to use, but that all of the Serpent wrappers would use in-

stances of the same CsoundOpcode class. To achieve

this, initialization steps were added to CsoundOpcode

not found in other Instr classes. Also, a second Serpent

generator script was designed to generate the opcode map-

pings that would reuse the generated CsoundOpcode Ser-

pent code. More details of each follow below.

5.3 CsoundOpcode

The CsoundOpcode class is a sub-class of Aura’s Instr

class. As mentioned in Section 5.1, the class uses the Op-

code layer to create and use CSOpcodes to bridge Aura

Instr usage with Csound’s opcode usage. In general,

most of the Aura Instr lifecycle maps closely to Csound’s

opcodes, and CsoundOpcode simply delegates actions

to CSOpcode.

The unique aspect of CsoundOpcode is its multi-step

initialization. For a native Aura Instr, when Serpent

code sends a message to create an instance of an Instr,

the Instr is first constructed using its constructor, then an

init_io() function is called as a means to set up argu-

ment pointers between Instrs, as well as perform other

initialization. However, to accommodate the generic de-

sign of CsoundOpcode to map to multiple Serpent rep-

resentations, the initialization steps of CsoundOpcode

were modified.

First, the constructor for CsoundOpcode takes no ar-

guments. At construction time, it only allocates the ba-

sic data for the class, but as of yet does no initialization.

Next, the init_io() function just calls the parent class’s

init_io()with zero inputs and outputs. Instead of mak-

ing the usual connection to other instruments, we will wait

to do it at a later time.

Following the standard construction and initialization, a

number of special methods were added. First,

set_opcode() is a method used to set what Csound op-

code the CsoundOpcode class should use. This passes

in the exact opcode name, input arg string, and output arg

string that should be matched against in the list of OENTRYs

available from Csound. This information is then used by

OpcodeFactory to create an instance of CSOpcode.

Next, set_a_input(), set_b_input(), and

set_c_input() functions are called. Each take in an

int index for what argument to set by arg position, and an

Aura object that should correspond to the Aura a, b, or c

type of the function called. (Aura types are described be-

low.) Once all inputs have been set, a final

init_complete() method is called. This then per-

forms the operations that a native Instr would in its

init_io() function, setting up argument pointers.

While care must be taken to call these functions in a spe-

cific order, the user does not have to particularly worry

about it as the generated Serpent code takes care to do all

of the operations correctly. To the user, the Serpent code

looks very much like any other Serpent class that wraps an

Aura Instr.

5.3.1 Mapping Csound and Aura types

An important part of allowing CsoundOpcode to func-

tion within Aura as an Instr is mapping of Aura types

to Csound types. In Aura, there are three types: a (audio-

rate vector), b (control-rate scalar), and c (constant scalar).

Fortunately, there is a direct mapping of these types to

Csound’s a-, k-, and i-type variables, respectively. Not

only are they related in purpose, but they also match in

storage requirements, if Csound is compiled with MYFLT

set to float.

In general, Aura Instrs share values directly by refer-

ence, sharing pointers between Instr instances. When

an Instr goes to process audio, it will first call the pro-

cessing methods for the Instrs it depends on, then use
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the values shared through the pointers directly. For flexi-

bility in CsoundOpcode, code was written to check the

sizeof(MYFLT) and compare to the sizeof(float).

If these match, then CsoundOpcode will use the stan-

dard Aura practice and share pointers, using the correspond-

ing CSOpcode methods for setting and getting arguments

by reference. If these do not match, this will be detected

and extra work will be done to read and convert values to

and from Csound. In this case, the CSOpcode methods

for setting and getting arguments by value are used. This

gives the flexibility for the Aura user to use the

CsoundOpcode class with either the double or float ver-

sion of Csound. 6

Another important thing to note is that while there are

corresponding types in Csound for Aura’s types, the op-

posite is not true. Csound has other types for which Aura

does not have a corresponding type. These include things

like f-sig (phase vocoder analysis signals) and array data

types. These types can be accessed through C++ but they

are not automatically available using Serpent. This then

restricts what opcodes can be supported by automatically

generated code, as described in the following section.

5.4 Generating Serpent Code

The design of the CsoundOpcode Instr enables the

use of Csound opcodes from Aura. However, to make this

convenient and safe to use, we need to generate Serpent

code that will create CsoundOpcode instances and con-

figure them for the desired opcode. Additionally, we want

to make what the user sees look like any other Aura Ser-

pent code, with the Csound opcodes looking and function-

ing like native Aura Instrs in Serpent.

A Python script was developed to generate stubs in Ser-

pent that encapsulate the operations and parameters needed

to instantiate Csound opcodes. Python was used because

Csound has an API available to Python. We use the API to

query the available opcodes in Csound and then use that in-

formation to generate Serpent code. The script takes care

not to generate Serpent classes for opcodes where argu-

ment types are not available in Aura. Also, a whitelist

and blacklist system was added for special cases where

OENTRY’s were marked up differently than what was doc-

umented in the manual, as well as for skipping generation

for opcodes that really make sense only in the context of

Csound instruments (i.e. opcodes for gotos, if-branching).

One other adjustment was required for Csound opcodes

that are polymorphic based upon their output argument

types. To handle these cases of polymorphism, the actual

name of the generated class has the output types appended

to them, i.e. "Linseg_a", "Linseg_k". This puts the burden

on the user to understand and know what version of the op-

code to call, but this was vastly simpler than implementing

a type inference system.

The output from the script is a single Serpent file called

csound_opcodes.srp. Using this code, end users can now

avail themselves of Csound opcodes within their projects.

6 In principle, one could also define Aura’s sample type to be double
and do all DSP in double precision.

The following section demonstrates usage of the generated

Serpent script.

5.5 Example Code

Figure 12 shows a simple example making use of Csound

opcodes within Aura, using the Serpent scripting language.

The code begins by loading csoundopcode_rpc.srp, which

was generated from the CsoundOpcode class. The infor-

mation in that file is in turn used by the csound_opcodes.srp

script, discussed in Section 5.4. This is all that is necessary

for Aura Serpent users to begin to use Csound opcodes.

load "csoundopcode_rpc"
load "csound_opcodes"

def adsr(a, d, s, r, u)
[a, 1, a + d, s, u, s, u + r, 0]

tone_bps = adsr(0.01, 0.1, 1.0, 0.5, 1.0)

def csTest(amp, freq):
tone = Mult(Moogladder(Vco2(1.0,

Linseg_k(freq, 0.4, freq * 2, 0.4,
freq, 0.1, freq)),

2000, 0.9), Env(tone_bps), t)
tone.name = "moogladder"
tone.play()

rtsched.cause(4.0, nil, 'csTest', 0.5, 400)
rtsched.cause(6.0, nil, 'csTest', 0.5, 600)
rtsched.cause(8.0, nil, 'csTest', 0.5, 700)

Figure 12. Example Serpent code using Csound opcodes

and Aura Instrs.

The next block of code defines a utility function that will

pack a list with values appropriate for use with the Aura

Env Instr. Then, tone_bps is defined to be used glob-

ally by the rest of the script.

Next is the csTest() function. Given an amplitude and

frequency, it will create an enveloped, filtered, saw-tooth

sound with a modulated frequency. It will last the duration

of Env Instr, using the values from tone_bps. After

creating the sound generator, it will call play() on it to

schedule it for playback. Note that Mult and Env map to

native Aura Instr classes, while Moogladder, Vco2,

and Linseg_k all map to CsoundOpcode Instrs. The

CsoundOpcode-based classes look and act in the exact

same manner as the native Aura Instr-based classes. (For

reference, Figure 13 shows an equivalent Csound ORC

code example, written using Csound 6 function-call syn-

tax style.)

The final part of the script uses rtsched() to schedule

three events. It uses the csTest() function to generate

and play Instr instances at times 4.0, 6.0, and 8.0. These

events will play using starting frequencies of 400 hz, 600

hz, and 700 hz.

6. CONCLUSIONS

This paper has analyzed how Csound opcodes are used in

Csound. We developed two layers of code to allow using

opcodes outside of the Csound engine in general, as well as

to use opcodes within the Aura music system. Bridging to-

gether two different music systems has shown us that while
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0dbfs=1
nchnls=1

instr 1

iamp = p4
ifreq = p5

out(moogladder(
vco2(1.0,
linseg(ifreq, 0.4, ifreq * 2, 0.4,

ifreq, 0.1, ifreq)), 2000, 0.9)) *
adsr(0.01, 0.1, 1.0, 0.5)))

endin

Figure 13. Csound ORC example using function-call syn-

tax.

system designs may differ, there are points of commonality

that would encourage reuse between systems. The end re-

sult is a working example where Csound opcodes are used

within Aura in a way that is natural for the Aura user.

For the future, we can see the generic Opcode layer dis-

cussed in Section 4 becoming a part of Csound’s own pub-

lic API. For other music systems developers, we see the

possibility of Csound becoming a library and resource upon

which to build larger systems. Within Csound itself, the

ability to instantiate and wire up opcode instances individ-

ually invites experimentation with live signal graph mod-

ifications. This would allow a number of use cases to be

addressed where Csound cannot currently be used, such as

patcher applications with live graph modifications. Also,

having an alternate compilation method within Csound that

allocates opcode instances individually might facilitate the

development of debugging facilities such as watches, prob-

ing, and logging.
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