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ABSTRACT

Gamma is a C++ library for sound synthesis that was cre-

ated to address some of the limitations of existing sound

synthesis libraries. The first limitation is that unit gener-

ators cannot easily be organized into separate sampling

domains. This makes it difficult to use unit generators with

different sample rates and in other domains, namely the

frequency domain. The second limitation is that certain

internal unit generator algorithms, such as interpolation,

cannot be customized. This tends to lead to closed architec-

tures consisting of multiple unit generators with only slight

algorithmic differences. Gamma makes explicit two novel

abstractions—assignable sampling domains and algorithm

Strategies—to help overcome these limitations and extend

the application range of its unit generators.

1. INTRODUCTION

There currently exist myriad C++ libraries oriented towards

real-time sound synthesis. Each is based on the unit gen-

erator abstraction [1] in order to allow construction of a

large variety of synthesis instruments and effects. Where

the libraries differ, however, is in the more specific kinds of

generalizations incorporated into the provided unit genera-

tors. Gamma is a C++ sound synthesis library that aims to

provide a basic set of lightweight, efficient, and, most im-

portantly, flexible unit generators both in terms of how they

can be connected and what types of data they can process.

Unlike existing libraries, Gamma utilizes both sampling do-

main and generic programming abstractions to extend the

range of applicability of its unit generators. Not only can

unit generators run at different rates, but they can also be

used in the frequency domain. In addition, unit generators

are type generic, and in certain cases, algorithm generic so

that they can easily be customized and extended without

having to re-implement certain core functionality.

In this paper, we first introduce related work and then dis-

cuss the motivation and design principles of Gamma. The

next sections discuss two novel abstractions—assignable

sampling domains and algorithm Strategies—that are used
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to increase the range of application of Gamma’s unit gener-

ators.

2. BACKGROUND

Existing C++ libraries that are oriented towards real-time

sound synthesis include CLAM [2], the CREATE Sig-

nal Library (CSL) [3], the ICST DSP library [4], IT++ 1 ,

JamomaDSP [5], Marsyas [6], Maximilian [7], Nsound 2 ,

sig++ 3 , SndObj [8], SPKit [9], SPUC 4 , the Synthesis

Toolkit (STK) [10, 11], and UGen++ [12]. We identify at

least three main distinctions between the implementations

of unit generators in these libraries: (1) processing granu-

larity (single-sample and/or block-based), (2) support for

processing generic types, and (3) ability to run at multiple

sample rates.

One distinction between the available libraries is their pro-

cessing granularity, namely, whether the unit generators

operate on blocks of samples or process one sample at a

time. The advantage of single-sample processing is that it

allows arbitrary routing of signals between unit generators

making it trival to implement, for instance, loop filters and

feedback FM. Approximately half of the libraries identi-

fied above use block-based processing, while the others

are based on single-sample processing. The block-based

processing libraries typically require unit generators to be

connected into a graph structure in order to be used. With

single-sample processing, unit generators simply contain a

method that returns the next sample which obviates the need

for a separate graph structure. sig++ and SPKit are excep-

tions to this, where unit generators are explicitly connected

into a graph.

Another distinction that can be made, given that C++

supports generic types through its template mechanism,

is whether the unit generators can process generic types.

Kronos [13], a descendent of PWGLSynth [14], serves as a

good example of generic-type processing in musical DSP

albeit it is not a C++ class library. IT++ uses three different

generic types for the input samples, output samples, and

coefficients of its filters. SPUC also uses generic types for

its filters, but only one type, Numeric, for both the input

and output samples. IT++ and SPUC, however, are mainly

oriented towards filtering and more general signal process-

1 http://itpp.sourceforge.net/devel/
2 http://nsound.sourceforge.net/
3 http://sig.sapp.org/
4 http://spuc.sourceforge.net/
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ing tasks rather than (musical) sound synthesis. Mozzi 5

uses generic sample types for several of its unit genera-

tors, however, most are specialized for integer types. While

several libraries allow generic sample types, none of them

permit generic algorithms for customizing the unit gener-

ators. What is typically seen are suffixes added to unit

generator names to designate different behaviors, such as

different interpolation policies. Csound/SndObj and Super-

collider/UGen++, for example, take this approach.

Synthesis libraries need to have a mechanism for keep-

ing unit generators synchronized with a sampling domain.

Synchronization typically occurs according to either: (1)

a pull model whereby unit generators simply read a sam-

ple rate variable whenever control parameters are updated

or (2) a push model whereby unit generators are notified

of a change in sample rate. While the pull model is sim-

pler to implement, the push model lends itself better to

optimizations involving pre-computing certain intermediate

variables, such as phase increment factors. In addition to

the push or pull approach, the sample rate is typically either

defined globally to be used by all unit generators or defined

locally within each unit generator. Defining the sample rate

locally permits unit generators to run at multiple sample

rates. Maximilian and Ugen++ unit generators read a global

sampling rate variable to stay synchronized. This has the ad-

vantage of simplicity, but does not allow unit generators to

run with multiple sample rates. CSL, NSound, and Marsyas

allow the sample rate to be specified locally for each unit

generator, thus allowing multiple sample rates. However,

the unit generator sample rates must be synchronized man-

ually. In JamomaDSP, sig++, SndObj and STK, the unit

generator base classes have a virtual method permitting

specific tasks to be executed by unit generators when the

sampling rate changes. STK also allows unit generators to

ignore notifications of a change in the global sampling rate

so they can be used in a multi-rate context.

3. LIBRARY DESIGN

The purpose of this section is to introduce some of the

motivation and design decisions underlying Gamma. Since

the purpose of this paper is not to introduce the library in

detail, it is recommendation that interested readers peruse

the available documentation on the Gamma homepage 6 .

3.1 Design Motivations

The overall goal of Gamma is to provide an easy-to-use

library for constructing complex, yet efficient synthesis

instruments and effects that can run on a wide variety of

platforms. This goal implies a design that

1. has a standard set of unit generators (oscillators,

noise, sample player, envelopes, filters, and variable

delays),

2. has a short-time Fourier transform (STFT),

3. performs single-sample processing,

5 http://sensorium.github.com/Mozzi/
6 http://www.mat.ucsb.edu/gamma

4. supports generic types, and

5. strives for low per-object memory and CPU consump-

tion.

C++ was desired largely for its zero-overhead rule of “what

you don’t use, you don’t pay for” [15] and for its templates

which support generic programming. Generic typing is es-

pecially useful for signal processing as many processing

algorithms are, at their core, simply algebraic formulations.

Single-sample processing was preferred over block-based

processing as it makes the least assumptions about how unit

generators should be used and keeps control parameter and

processing updates separate. Low memory/CPU consump-

tion has obvious performance benefits, but is also seen as

an important component of scalability. A well-made library

should run efficiently on as many platforms as possible,

especially those with limited resources.

At the moment, there are no other sound synthesis libraries

satisfying all of these design requirements. The Synthesis

Toolkit [10, 11] comes close, but lacks an STFT class and

does not support generic types.

3.2 Unit Generators

Unit generators in Gamma are divided into generators and

filters. Generators produce a sequence of samples and filters

transform an input sample into an output sample. The basic

generators and filters are listed and described in Fig. 1 and

Fig. 2, respectively.

Unit generators are implemented as function objects [16].

Function objects are essentially objects with an overloaded

function call operator that performs the object’s main action.

The main action for unit generators is simply to process

the next sample. Generators overload the nullary function

call operator while filters overload the unary function call

operator. For example, the next output of a generator gen

is obtained by calling gen() and the next output of a filter

flt is obtained by calling flt(x) where x is the input.

4. PROCESSING ABSTRACTIONS

Gamma provides two primary abstractions that greatly ex-

tend the range of application of its provided unit generators.

The first of these is the use of generics for unit generator

sample and parameter types and processing algorithms. The

second abstraction is assignable sampling domains where

unit generators can operate under arbitrarily defined one-

dimensional sampling domains.

4.1 Generic Types

Generic types are used to increase the versatility of genera-

tors and filters without needing to change their underlying

algorithm. Gamma uses C++ templates to allow concrete

classes to be made according to generic types. The advan-

tage of this approach over, for example, macros or typedefs,

is that the library can easily accommodate different sam-

ple types in application code without needing to resort to

multiple explicit compilations. This makes it easy to define
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Accum Phase accumulator/timer

Osc Wavetable oscillator

LFO Non-band-limited oscillator

Sine Sine wave

SineR(s) Sine resonance (bank)

SineD(s) Damped sine resonance (bank)

CSine (Damped) complex sinusoid

DSF Discrete summation formula

Impulse Band-limited impulse train

Saw Band-limited saw wave

Square Band-limited square wave

SamplePlayer Sample/sound file player

NoiseWhite White noise

NoisePink Pink noise

NoiseBrown Brown noise

Env N-segment exponential envelope

Decay Exponential decay

Seg Interpolated segment

Figure 1. Generator classes.

processors having different precision within the same appli-

cation. For example, single- and double-precision one-pole

filters can be declared as:

OnePole<float> opf;
OnePole<double> opd;

Beyond permitting different precision types, unit genera-

tors can also operate on non-scalar types, such as complex

numbers and vectors. For example, it is often necessary

to apply the same filter to a stereo signal. Ideally, only

one set of filter coefficients should be used to save memory

and eliminate duplicate effort in computing the coefficients

from parametric controls. A one-pole filter that processes a

2-vector using the provided n-vector class, Vec, is declared

as:

OnePole<Vec<2,float> > op2;

For convenience, Gamma provides 2-vector float2 and

double2 types, so the previous example can be written

OnePole<float2> op2;

4.2 Strategies

One can broaden the scope of generics beyond types to

also include algorithms. In the parlance of design patterns,

a Strategy is an object that represents an algorithm [17].

Strategies are light-weight function objects, typically hav-

ing little or no data, that conform to an identical interface,

OnePole 1-pole filter

AllPass1 1st-order allpass

AllPass2 2nd-order allpass

Biquad 2-pole, 2-zero filter

Notch 2-zero notch

Reson 2-pole resonator

BlockDC DC blocker

Integrator Leaky integrator

DelayShift Fixed n-sample delay

Delay Variable length delay

Comb Comb filter/feedback delay

Multitap Multitap delay

Hilbert Hilbert transformer

Figure 2. Filter classes.

yet behave differently. Strategies permit certain behaviors

of a class to be swapped out or customized without having

to define a new class.

In Gamma, Strategies are employed for two main pur-

poses—to reduce the number of base unit generator types

and to permit unit generators to be extended more easily

than by subclassing. For example, Listing 1 shows how

Strategies are used to declare different types of a wavetable

oscillator class. The Strategies used in Gamma are compile-

time rather than run-time so that they can be efficiently

inlined. Two main Strategies are utilized—interpolation

and phase increment.

// Oscillator with truncating interpolation
Osc<float, ipl::Trunc, phsInc::Loop>

// Oscillator with linear interpolation
Osc<float, ipl::Linear, phsInc::Loop>

// One-shot with linear interpolation
Osc<float, ipl::Linear, phsInc::OneShot>

// Ping-pong oscillator with cubic
interpolation

Osc<float, ipl::Cubic, phsInc::PingPong>

Listing 1. Different oscillator types based on

combinations of interpolation and phase increment

Strategies.

Interpolation Strategies are used to specify the interpo-

lation method used in delay lines, table-based oscillators,

and envelope segments. Two types of interpolation Strate-

gies are present in Gamma: random-access and sequence.

Random-access interpolation Strategies are used for interpo-

lating values at arbitrary positions along an array. Sequence

interpolation Strategies are for interpolating a stream of

sample points.

The currently provided random-access interpolation

Strategies are Trunc, Round, Linear, Cubic, and

AllPass. The Switchable Strategy allows switching

between any of the aforementioned interpolation types at
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namespace ipl{

// Truncating interpolation strategy
template <class T>
class Trunc{
public:

T operator()(
const T * src, int size,
int iInt, double iFrac) const

{
return src[iInt];

}
};

// Linear interpolation strategy
template <class T>
class Linear{
public:

T operator()(
const T * src, int size,
int iInt, double iFrac) const

{
return src[iInt] +

(src[(iInt+1)%size] -
src[iInt])*iFrac;

}
};
}

// Wavetable with interpolation strategy
template <int N, class T, class InterpStrat>
class Wavetable{
public:

T read(double index) const {
unsigned i = int(index);
double f = index - i;
return mInterpStrat(mTable,N, i,f);

}

private:
T mTable[N];
InterpStrat<T> mInterpStrat;

};

// Declare table w/ linear interpolation
Wavetable<1024,float, ipl::Linear> tableL;

// Declare table w/ truncating interpolation
Wavetable<1024,float, ipl::Trunc> tableT;

Listing 2. Example interpolation Strategy class

definitions and usage with a Wavetable class.

run-time. Listing 2 gives example class definitions for

truncating and linear interpolation Strategies and their us-

age with a Wavetable class. Each interpolation Strat-

egy shares the same function operator prototype to access

an array. (In practice, there could be many such func-

tion operators for specific types of array access.) The

Wavetable class takes an interpolation Strategy as a tem-

plate parameter and then creates a member of that type.

In Wavetable::read, the interpolation Strategy’s over-

loaded function operator is called to compute the interpo-

lated value.

Sequence interpolation Strategies maintain a small FIFO

buffer of samples from which an interpolated value can

be computed using a specific interpolation method. At

the moment, Trunc, Linear, Cubic, and Cosine se-

quence interpolation Strategies are provided. For example,

the Linear sequence interpolation Strategy operates as

follows:

iplSeq::Linear lerp;
lerp.push( 0);
lerp.push(20); // sample points are 0, 20
lerp(0.5); // returns 10
lerp(0.1); // returns 2
lerp.push(40); // sample points are 20, 40
lerp(0.5); // returns 30

The Seg unit generator utilizes a sequence interpolation

Strategy to create an envelope between two sample points.

The basic operation of Seg is to interpolate between two

values over some specified length and then hold the end

value indefinitely. In this way, it can be used to smooth low

sample rate synchronous or asynchronous signals. Another

mode of operation allows periodic generation of segments

in a process similar to upsampling. This is accomplished

through an overloaded function call operator that takes a

function object as an argument. Whenever the end of the

segment is reached, it requests the passed-in function object

to generate its next sample, pushes this onto the segment’s

internal FIFO buffer, and starts the segment over. This ef-

fectively starts a new segment that is piece-wise continuous

with the old one. Perhaps one of the most useful applica-

tions of this mode of operation is producing low-frequency

signals from stochastic, non-linear, or other sequence gen-

erators. Listing 3 demonstrates how the NoisePink and

Seg unit generators can be used together to create low-

frequency, cubic-interpolated pink noise.

// SETUP
// Pink noise generator
NoisePink<> noise;

// Interpolated segment running at 10 Hz
Seg<float, iplSeq::Cubic> seg(1./10);

void audioCallback(...){
for(int i=0; i<blockSize; i++){

float s = seg(noise);
}

}

Listing 3. Low-frequency, cubic-interpolated pink noise

built from the NoisePink and Seg unit generators.

In the example above, the noise object (not a noise sample)

is passed as an argument to the segment’s function operator

in the sample loop. The segment’s function operator will

generate the noise’s next sample and update the segment

endpoints on the condition that the end of the segment

has been reached. Otherwise, the next interpolated sample

between the existing endpoints is returned.

Phase increment Strategies include Loop, OneShot,

NShot, PingPong, and Rhythm (Fig. 3). Loop repeat-

edly cycles the phase, like a typical phase accumulator driv-

ing an oscillator. OneShot cycles the phase once and then

holds its end value. In this way, it can be used for one-shot

playback, such as with sample playback and table-based en-

velopes. PingPong is a bidirectional loop that alternates

the phase forward and backward. NShot and Rhythm are

slightly more complex Strategies that permit specific kinds

of phase patterns. NShot is like OneShot, except cycles

the phase a specified number of times. Rhythm repeatedly

cycles or holds the phase for one period according to a bi-

nary pattern of up to 32 bits. If the bit is 1, then the phase

wraps. If the bit is 0, then the phase holds its position for
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one period.

Loop OneShot

PingPong

Rhythm

NShot

Figure 3. Phase increment Strategies. The dashed lines

indicate the Strategy’s long-term (repeating) pattern. The

Rhythm Strategy has the pattern string “/.//”.

Rhythm allows complex rhythmic patterns to be pro-

duced at both audio and sub-audio rates, as with pulsar

synthesis using burst masking [18]. Rhythm patterns can

be specified using a 32-bit unsigned integer where the most

significant bit is the start of the pattern or as a C-style char-

acter string. Character strings follow the convention of ‘.’

indicating off and ‘/’ indicating on in a similar fashion to

GROOVE [19]. For example, we can use Rhythm to apply

a rhythmic envelope to an oscillator (Listing 4).

// SETUP
Osc<> src(400);
LFO<phsInc::Rhythm> env(8);
env.phsInc().pattern("/../../.");

void audioCallback(...){
for(int i=0; i<blockSize; i++){

float s = src() * env.downU();
}

}

Listing 4. Using the Rhythm Strategy to apply a

rhythmic envelope to an oscillator source.

4.3 Assignable Sampling Domains

Perhaps the most novel abstraction of Gamma is assignable

sampling domains, a way to dynamically assign unit gen-

erators to a particular sampling domain. The original mo-

tivation behind this design was to make it easy to run unit

generators in both the time domain and frequency domain.

Of course, it also allows unit generators to be configured

to run at various rates, such as audio or block rate or some

windowed analysis rate.

The abstraction utilizes an Observer pattern [17] so

that groups of unit generators can be notified when-

ever their associated sampling interval changes. There

are two main classes involved with assignable sampling

domains, Domain and DomainObserver, which are

the subject and observer, respectively, of the Observer

pattern. By default, all unit generators inherit from

DomainObserver. A DomainObserver attaches it-

self to a Domain so that it is notified whenever the sam-

pling interval changes. The overloaded << operator is used

to attach a DomainObserver to a Domain. The follow-

ing illustrates this

DomainObserver obs;
Domain dom;
dom << obs;

It is possible to instantiate more than one Domain so that

multiple sampling intervals can be used within a single

system. DomainObservers can attach to any Domain,

but always have exactly one Domain.

Most of the time, unit generators will only need to observe

a single sampling rate. For convenience, a default Domain

called master is supplied. All DomainObservers are

automatically attached to master when constructed. The

master domain is initialized with a sample rate/interval

of 1. To set it to a specific sample rate, say 44.1 kHz, one

calls

Domain::master().spu(44100);

where spu stands for samples per unit. A slightly more

complex situation involves unit generators running at both

sample and control rate. For this, an additional control-rate

domain can be utilized. Listing 5 illustrates how one could

implement a vibrato effect operating at block rate.

// SETUP
Domain::master().spu(44100.);
Domain blockDomain(44100./blockSize);
Sine<> mod(5);
Sine<> car;

// Attach modulator to block domain
blockDomain << mod;

void audioCallback(...){

car.freq( mod()*5 + 440 );

// SAMPLE LOOP
for(int i=0; i<blockSize; i++){

float s = car();
}

}

Listing 5. Control-rate vibrato implemented using a

block-rate time domain.

A perhaps more interesting use of assignable domains is

configuring unit generators to operate in frequency domain.

For example, an oscillator or a break-point envelope can be

used as a magnitude envelope. Listing 6 demonstrates how

one can create a barber-pole combing effect using an STFT

and two sine oscillators.

All unit generators have as their last template parameter a

domain class which is inherited by the unit generator. The

default domain class is DomainObserver. A special

type of domain, Domain1, can be used for unit generators

that function entirely with normalized frequencies in the

interval [0, 1]. Domain1 has the advantage that it does not

consume memory or need to do unit conversions since both

its sampling frequency and sampling interval are fixed at 1.

This is also especially useful for composite objects where

unit conversions from a particular domain may only need

to be done once by the composing object.
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// SETUP
Domain::master().spu(44100.);

STFT stft;
Sine<> env(1/100.);
Sine<> envPhase(1);

stft.domainFreq() << env;
stft.domainHop() << envPhase;

void audioCallback(...){

// TIME SAMPLE LOOP
for(int i=0; i<blockSize; i++){

float s = ...; // current sample

// Check if next spectral frame is
ready...

if(stft(s)){
env.phase(envPhase()*0.5 + 0.5);
int N = stft.numBins();

// FREQUENCY SAMPLE LOOP
for(int k=0; k<N; ++k){

stft.bin(k) *= env();
}

}

// Resynthesis
s = stft();

}
}

Listing 6. Barber-pole combing effect using hop- and

frequency-domain oscillators.

5. CONCLUSION

Gamma attempts to maximize the flexibility of its sup-

plied unit generators by utilizing single-sample processing,

generic types and algorithms, and assignable sampling do-

mains. Single-sample processing has proven to be very flex-

ible and efficient if one is satisfied with static unit generator

graphs. Generic types and algorithms add more complexity

to the library, but it seems to be a reasonable trade-off as

they bring a whole new dimension of code reuse and exten-

sibility, which are generally considered good. Assignable

sampling domains make it easy to manage unit generators

running at different rates. By allowing standard unit gen-

erators such as oscillators and envelopes to operate in the

frequency domain many possibilities for new and exotic ef-

fects emerge. It remains to be seen if LCCD filters, such as

biquads, have any meaningful applications in the frequency

domain. One unique attribute of the frequency-domain is

that it is non-causal, unlike the time-domain, and thus IIR

filters can be made linear phase through bidirectional filter-

ing. Instead of filtering across frequency, one could filter

the temporal trajectories of individual bin magnitudes to

produce spectral blurring and other effects. This would

require filters to efficiently handle arrays as sample types,

something not handled in Gamma at the moment.
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