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ABSTRACT

In this article, we present a set of musical transforma-

tions based on chord spaces representations derived from

the Tonnetz. These chord spaces are formalized as simpli-

cial complexes. A piece is represented in such a space by a

trajectory. Spatial transformations are applied on these tra-

jectories and induce a transformation of the original piece.

These concepts are implemented in two applications, the

software HexaChord and the Max object bach.tonnetz, re-

spectively dedicated to music analysis and composition.

1. INTRODUCTION

Music theorists often represent sets of symbolic objects

(notes, chords, rhythms, etc.) by spatial structures. The

specification of a number of these structures can be facili-

tated by an algebraic reformulation of the represented ob-

jects. Studying combinatorial, geometrical or topological

properties of these spaces inspires new approaches in mu-

sical theory. Moreover, these spaces can be exploited as

“support spaces” to represent and analyze existing musical

sequences. For example, one can observe neo-Riemannian

transformations in the Tonnetz [1], voice-leading progres-

sions in orbifolds [2], or track key boundaries in the spiral

array [3].

We propose to use a set of chord spaces, inspired by the

Tonnetz, to operate some musical transformations. These

spaces are chord-based simplicial complexes which have

proved to be useful in musical analysis [4]. In this work,

we show their benefit in the context of musical transfor-

mations. Sections 2 and 3 provide technical and musical

backgrounds. Section 4 presents what is a chord-based

complex and how a musical sequence is represented as a

trajectory within it. In section 5, we investigate some spa-

tial transformations of trajectories and their musical inter-

pretation. Section 6 presents two implementations of the

concepts presented in the previous sections. The first one,
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HexaChord is an experimental software dedicated to compu-

tational music analysis. The second one is the Max object

bach.tonnetz.

2. TECHNICAL BACKGROUND

2.1 Simplicial complexes

Let V be a set of elements. A simplicial complexK defined

on V is a set of non-empty finite subsets of V , called sim-

plices and denoted σ ∈ K, verifying the closure condition:

For any simplex σ ∈ K, every non-empty sub-

set σ′ ⊂ σ is also an element of K, i.e., σ′ ∈ K

We say that σ′ is incident to σ, written σ′ ≺ σ. Every

simplex σ of K is characterized by its dimension such that

dim(σ) = card(σ) − 1 where the function card gives

the cardinality of σ. A simplex of dimension n is called

a n-simplex. 0-Simplices can be represented by vertices,

1-simplices by edges, 2-simplices by triangles, etc.

The closure condition implies that every n-simplex is in-

cident to n+1 (n−1)-simplices (e.g., an edge is incident to

2 vertices, a triangle is incident to 3 edges, etc). A proper

subset of a simplicial complex K which is also a simpli-

cial complex is called a sub-complex of K. For the sake of

simplicity, we will often consider that the term “simplex”

designates the sub-complex containing a simplex and all

its incident simplices of lower dimensions. Figure 1 illus-

trates examples of n-simplices for n ∈ {0, 1, 2} .

A simplicial d-complex is a simplicial complex where the

highest dimension of any simplex is d. A graph is a sim-

plicial 1-complex. Figure 4 shows a simplicial 2-complex

and a simplicial 3-complex. For any natural integer n, the

n-skeleton of a simplicial complex K is defined by the sub-

complex Sn(K) of this complex formed by its simplices of

dimension n or less.

2.2 Simplicial collections

A simplicial collection K is a labeled simplicial complex.

The term “collection” comes from the notion of topologi-

cal collection used in the MGS programming language [5]

which has strongly inspired this work.
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0-simplex 1-simplex 2-simplex

Figure 1. Some simplices.

More formally, a simplicial collection is a function that

associates values from an arbitrary set with the simplicies

of a simplicial complex. The notation K(σ) enables to ad-

dress the label associated with the cell σ in the collection

K. We denote |K| the support of the collection K which is

the simplicial complex without label. A collection K′ is a

sub-collection of K if |K′| ⊂ |K| and K′(σ) = K(σ) for

every σ of K′. When no ambiguity is possible, the notation

| · | will be omitted. Similarly, we will often use the term

“complex” to designate a simplicial collection, that is the

simplicial complex and its labels.

2.3 Structural inclusions

In this work, we will be interested in the ways a complex

can be embedded into an other one (or into itself). In or-

der to deal with this notion, we introduce the concepts of

morphism and structural inclusion.

Let K and K′ be two simplicial complexes. A function

φ : K → K′ is a morphism of simplicial complexes if for

every cell σ and σ′ of K:

1. σ ≺ σ′ ⇒ φ(σ) ≺ φ(σ′),

2. dimK′(φ(σ)) = dimK(σ).

These two conditions preserve respectively the neighbor-

hood between simplices and their dimension. In other words,

a morphism of complex is a function which preserve its

structure.

A morphism between the support complexes of two sim-

plicial collections induces a way to modify values labelling

the simplices. Let K and K′ be two simplicial collections

and φ : |K| → |K′| a morphism of complex from the sup-

port complex of K into the support complex of K′. We

note Kφ the simplicial collection having the support com-

plex |K| such that for every simplex σ of |K|:

Kφ(σ) = K′(φ(σ))

The structural inclusion enables to formulate how a com-

plex can be embedded into a second one. A structural in-

clusion of a complex K in complex K′ is an injective mor-

phism from K into K′. A morphism of complex is injective

if ∀σ, σ′ ∈ K, φ(σ) = φ(σ′) ⇒ σ = σ′. Injectivity en-

ables to distinguish in K′ a sub-complex isomorphic to K.

We thus say that K is structurally included in K′. Finally,

every automorphism in a complex defines a structural in-

clusion into itself. The set of automorphisms of a complex

represents its structural symmetries.
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Figure 2. A region within an [0258] Tonnetz 

point in the lattice may be located in reference to any other point in terms 
of units traversed along each of the axes, and consequently, if the pitch 
class of the first point is known, one can determine the pitch class of the 
second. For instance, in Figure 2, a point one positive unit along the b- 
axis from C (=0) is 0+7 = G. A point one positive unit along the a-axis, 
one positive unit along the b-axis, and one negative unit along the c-axis 
from C is (1.4) + (1-7) + (-1.10) = 1 = C#. 

The 60* angle is chosen because it is the angle formed at the edges of 
a regular tetrahedron meeting at a vertex. Just as triangular areas of the 
2-D Tonnetz correspond to triadic elements (or trichordal elements, in the 
case of a generalized 2-D Tonnetz), tetrahedral volumes in our 3-D Ton- 

netz correspond to its tetrachordal elements. In Figure 2, one can observe 
that any point, along with the points lying one positive unit along the a-, 
b-, and c-axes, describe the vertices of an upward-pointing tetrahedron 
and that the pitch classes represented by these points constitute a 'domi- 
nant-seventh' chord. Similarly, any point and the points lying one nega- 
tive unit along a-, b-, and c-axes describe the vertices of a downward 

pointing tetrahedron, and the pitch classes represented by these vertices 

correspond to some Tristan or half-diminished seventh chord. Analogous 
to the inverted triangles/triads of the 2-D Tonnetz, the dual structures of 
Tristan and dominant-seventh chords are visually manifest as oppositely 
oriented tetrahedra in the 3-D Tonnetz (i.e., pyramids with peaks pointed 
upward, versus those with peaks pointed downward). 

Before I discuss relations among tetrachordal elements in our Tonnetz, 
it will be helpful to develop a contextual notation for identifying the pitch 
elements of the tetrachords. For this, we can adapt a contextual notation 

198 

Figure 2. On the left the neo-Riemannian Tonnetz and

the three neo-Riemannian operations P , L and R. On the

right, a three-dimensional derivation of the Tonnetz by E.

Gollin [8].

3. MUSICAL REPRESENTATIONS

In this section, we present two well-known notions in mu-

sic theory: the Tonnetz, which is a spatial organization of

pitches, and T/I classes, which provide a classification of

musical chords. These notions constitute the musical start-

ing point of this work.

3.1 The Tonnetz

One of the stronger motivations of this work is the wish

to formalize a widely used tool in music theory, analysis

and composition, named Tonnetz. The Tonnetz is a sym-

bolic organization of pitches in the euclidean space fol-

lowing infinite axes associated to particular musical inter-

vals. It was first investigated by L. Euler [6] for acoustical

purpose 1 and rediscovered later by musicologists A. von

Oettingen and H. Riemann. More recently, music theorists

have shown a strong interest in this model, in particular to

represent typical post-romantic chord progressions [1] cur-

rently called neo-Riemannian transformations. This model

has been used in musical composition as well [7].

The neo-RiemannianTonnetz (on the left side of figure 2)

is a graph in which pitches are organized along the inter-

vals of fifth (horizontal axis), major and minor thirds (diag-

onal axis). This representation has the interesting property

to reveal major and minor triads as triangles. The three ar-

rows illustrate the neo-Riemannianoperations P (Parallel),

L (Leading-tone) and R (Relative) which enable transi-

tions between two triads having two common notes. Many

inspired theorists have investigated different derivations of

the Tonnetz, often referred as to generalized Tonnetze. For

instance, the figure 2 on the right illustrates a three-dimen-

sional Tonnetz presented in [8]. This model corresponds

to the one on the left figure 2, in which some new interval

axes have been added. Tetrahedrons represent dominant

seventh and half-diminished chords. Three-dimensional

models are well adapted to study 4-note chords progres-

sions. Finally, similar structures can be built by associating

axes with intervals that are diatonic instead of chromatic.

In these diatonic Tonnetze, vertices and shapes only repre-

sent notes and chords belonging to a unique tonality.

1 Euler’s Tonnetz (Speculum Musicum) organizes pitches in just into-
nation along pure fifths (horizontal axis) ans pure major thirds (vertical
axis).
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In this work, we are limited to the context of equal tem-

perament and octave reduction i.e., we are dealing with

pitch classes, without consideration of octaves. For ex-

ample, the notes C♯3, C♯4 and D♭4 are all considered un-

der the same pitch class. In particular, what we call Ton-

netz more exactly refers to the pitch class Tonnetz. In this

context, the graph on the left of figure 2 repeats infinitely

the 12 pitch classes along its axes. An important conse-

quence of this representation is that every pitch-class is

represented in multiple locations. However, the methods

presented here could be applied in more general contexts

(e.g., just intonation, octave distinction). The Max object

bach.tonnetz presented in section 6 enables, for example,

to avoid octave identification within the Tonnetz.

3.2 Generalized Tonnetze and T/I classes

The highlighting of particular chords (minor/major chords

as triangles in the neo-Riemannian Tonnetz and dominant

seventh/half diminished chords as tetrahedrons in the three-

dimensional Tonnetz) suggests the idea that the starting

point of the construction of a Tonnetz could be a set of

chords rather than a set of interval axes. In the two ex-

amples above, the represented chords in a Tonnetz are all

equivalent up to transposition and inversion i.e., they be-

long to the same T/I class. This property comes from the

repetition and the invertibility of the intervals on the axes.

It is usual to identify a T/I class by the intervallic struc-

ture which is shared by all the chords of the class. For

instance, major and minor chords all share the intervalic

structure [3, 4, 5] because the row of intervals between pitch

classes they are resulting from is composed of a minor third

(3 semitones), a major third (4 semitones) and a fourth (5

semitones). Note that the elements of the intervallic struc-

ture add up to the number of steps N dividing the octave

e.g., N = 12 in the chromatic system and N = 7 in the

diatonic system. This notation of the intervallic structure is

defined up to reflection and circular permutation. Indeed,

intervals are not ordered in the same direction for major

([4, 3, 5]) and minor chords ([3, 4, 5]). Dominant seventh

and half diminished chords are identified by the intervallic

structure [2, 3, 3, 4].

T/I classes can be associated with the orbits of the action

of the dihedral group DN on the subsets of ZN [9]. There

exists 224 such classes in the chromatic system (N = 12),

also known as Forte classes [10]. In the diatonic system

(N = 7), which divides the octave in seven (non equal)

parts, there exist 18 such classes. Following this line, we

are interested in building the generalized Tonnetze associ-

ated with the 224 T/I chromatic classes and 18 T/I dia-

tonic classes.

4. CHORD COMPLEXES AND TRAJECTORIES

In this section, we propose to represent a musical sequence

by a trajectory in a chord space. Chord spaces are in-

spired by the Tonnetz and formalized as simplicial com-

plexes. Trajectories are sequences of regions of these com-

plexes.

4.1 Chord-based complexes

In the following, we call chord a set of pitch classes. This

means that we make abstraction of some parameters such

as duration and octave position of the notes.

4.1.1 Generalized Tonnetze as simplicial collections

We use a method presented in [11] to represent chords as

simplices. A n-note chord is represented by a (n − 1)-
simplex. A 0-simplex represents a single pitch class, a 1-

simplex represents a 2-note chord, a 2-simplex represents

a 3-note chord. Figure 3 illustrates on the right a simplicial

collection representing the C major chord. It includes 7

simplices representing each sub-chord of C major (includ-

ing pitch classes).

We represent a generalized Tonnetz as a simplicial collec-

tion composed by n-simplices representing the chords of a

given T/I class. In the following, we note K[a1, . . . , ai]
the complex associated with the T/I class identified by the

intervalic structure [a1, . . . , ai]. Figure 4 illustrates regions

of the complexes K[3, 4, 5] and K[2, 3, 3, 4]. They respec-

tively correspond to the two graphs of figure 2 in which

2-simplices and 3-simplices have been integrated. In other

words, the neo-Riemannian Tonnetz and the three-dimen-

sional Tonnetz respectively correspond to the 1-skeletons

of K[3, 4, 5] and K[2, 3, 3, 4].

4.1.2 Chord complex construction

We build the chord complex K[a1, . . . , ai] as follows. First,

a n-note chord belonging to the class identified by the in-

tervallic structure [a1, . . . , ai] is chosen and represented by

a (n − 1)-simplex. For example, the C major chord il-

lustrated on the right figure 3 for the class [3, 4, 5]. The

simplex is then embedded in an equilateral manner in the

(n− 1)-dimensional Euclidean space. For a 3-note chord,

this space is the euclidean plane and the chord is embed-

ded as an equilateral triangle. The directions given to the

1-simplices (i.e., edges) define axes associated with par-

ticular intervals, like in the Tonnetz. Then, simplices are

naturally replicated along these axes, in a way that the rep-

resented chords respect the transpositions induced by the

axes intervals. The transposition is chromatic or diatonic

depending on the T/I class. Note that the simplices of a

complex associated with a diatonic T/I class only repre-

sent pitch classes and chords belonging to a unique tonal-

ity.

A consequence of this generic method of construction is

that two complexes associated with chord classes of the

same size are isomorphic. For example, the two complexes

3-simplex1-simplex

{C,E}

{E,G}

C

{C,G}

{C,E,G}

G E

3-note

chord
2-simplex0-simplex note

2-note

chord

4-note

chord

Figure 3. A chord represented as a simplex. The complex

on the right corresponds to the C major chord and all 2-

note chords and notes included within it.
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C# Ab F# 

A E 

C F G 

D 

Bb 

C# Ab Eb 

B 

Bb 

B Eb 

D 

Figure 4. On the left, a region of the complex K[3, 4, 5]
composed by major and minor chords. On the right, the

complex K[2, 3, 3, 4] composed by dominant seventh and

half-diminished chords.
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Figure 5. Segmentation of a sequence depending on the

set of played pitch classes. The duration unit corresponds

here to the quarter note.

K[3, 4, 5] and K[2, 3, 7] are both two-dimensional infinite

triangular tessellation, as illustrated on the left of figure 4.

4.2 Representation of a musical sequence in a chord

complex

In this section, we propose to represent a musical sequence

by a trajectory in a chord complex. A trajectory is a se-

quence of regions of the complex. Each successive region

represents a temporal segment of the piece. In this work,

we use a very simple segmentation method, based on ap-

pearance and disappearance of pitch classes. Each time a

pitch class enters or leaves the set of played notes, the cur-

rent segment stops and a new one begins. This principle

is illustrated figure 5. Each segment is characterized by its

relative duration, compared to the other segments. Thus,

we reduce a musical sequence P to a sequence of pitch

class sets, each labeled by a relative duration. We have

thus P = [(A0, d0), . . . , (AN , dN )] where Ai is the set of

active pitch classes during a duration di.

As previously mentioned, each pitch class is represented

in multiple locations in the pitch class Tonnetz. In the same

way, a n-note chord is represented by multiple (n − 1)-
simplices in a chord complex.

A trajectory in a chord complex K is a sequence of sub-

collections of K, which are all labeled by a duration. Let

TK = [(K0, d0), . . . , (KN , dN )] be a trajectory in K and

P = [(A0, d
′
0), . . . , (AN , d

′
N )] a musical sequence. We

say that TK represents P if for every i, di = d
′
i and Ki is a

simplicial sub-collection such that:

∀σ ∈ |Ki|, K(σ) ⊆ Ai

C# Ab F# 

A E 

C F G 

D 

Bb 

C# Ab Eb 

B 

Bb 

B Eb 

D 

Figure 6. Trace (in blue) of a trajectory representing the

sequence illustrated figure 5 in K[3, 4, 5].

In other words, the sub-collection Ki represents only set of

notes present in the ith segment of the sequence. The trace

of a trajectory TK is the sub-collection T ⊆ K constituted

by the simplices included in TK:

T =
⋃

(Ki,di)∈TK

Ki

Figure 6 illustrates the trace of a sequence representing

the sequence illustrated figure 5 in K[3, 4, 5]. The defini-

tion enables a large number of different trajectories to rep-

resent a given sequence P in a complex K (remember that

each chord is represented in multiple locations in the com-

plex). To automatically attribute a trajectory to a sequence,

we use an algorithm based on two main criteria:

• chords must be represented as compact sub-complexes,

• chord transitions must correspond with small move-

ments.

For a complete description of the algorithm, please refer

to [11].

5. TRANSFORMATIONS OF TRAJECTORIES

In this section, we present different transformations of mu-

sical sequences, defined by spatial operations on trajecto-

ries. These operations can be rotations, translations, or em-

beddings of the trajectory in a new support space. Some

spatial transformations correspond to well-known musi-

cal operations, for example transpositions and inversions.

Some others do not have at the present any familiar inter-

pretation.

5.1 Transformation of a sequence

Let P be a musical sequence, K and K′ two chord com-

plexes, and T ⊂ K the trace of a trajectory TK which rep-

resents the sequence P in K. Let φ be a structural inclusion

of |T | in |K′|. The morphism φ enables a relabelling of the

simplices of K to shape a trace T φ in K′. This modification

of labels induces then a transformation Tφ of the sequence

P into a different sequence P ′ defined by:

Tφ(Ai, di) = ({n ∈ ZN | ∃ σ ∈ S0(Ki), T
φ(σ) = n}, di)

where Ki represents Ai in TK.
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embedding 

K[3,4,5] K[2,3,7] 

Figure 7. On the left, the first measures of the choral

BWV256 of J.-S. Bach represented by a trajectory in

K[3, 4, 5]. On the right, the transformation of the sequence

resulting from the embedding of the trajectory in K[2, 3, 7]

The notation Tφ stresses the fact that the transformation

only depends on the function φ (not on the sequence P ).

We observe that the transformation Tφ can be applied just

on the vertices to determine the new set of pitch classes. To

produce a new sequence P ′ from the new segments given

by Tφ, it is necessary to provide the octave information for

each transformed pitch class. In the next examples, we

propose to choose the octave of the transformed pitch class

in a way that the distance with the original pitch is mini-

mized. Then, a transformation affects pitch classes without

modifying too much the pitch register in which the new se-

quence is evolving. Furthermore, as this work concentrates

on pitch transformations, duration of segments are left un-

changed.

5.2 Isomorphism between two support spaces

Let K1 and K2 be two chord complexes, and φ a structural

inclusion of |K1| in |K2|. It is easy to see that the function

φ can be applied to any trajectory in K1. This kind of trans-

formation can intuitively be understood as an embedding in

a complex of a trajectory coming from an other complex.

In particular, every isomorphism between two complexes

K1 and K2 enables the embedding of a given trajectory

built in one of the complexes into the second one.

As mentioned in section 4, chord complexes K[a1, . . . , ai]
are isomorphic when they are of the same dimension. For

example, K[3, 4, 5] and K[2, 3, 7] are isomorphic since they

both result from infinite repetition of 2-simplices along

axes in three directions. A natural consequence is that any

trajectory built in one of these complexes can be embedded

into a second one.

Figure 7 illustrates this transformation with the first mea-

sures of the choral BWV256 of J.-S. Bach. The trajectory

on the left represents the sequence in K[3, 4, 5]. In this

complex, triangles represent major and minor chords. On

the right, the same trajectory in K[2, 3, 7], in which trian-

gles represent “incomplete minor seventh chords”, i.e., mi-

nor or dominant seventh chords without fifth. These chords

have the interesting property to include typical intervals of

the pentatonic scale, which gives a particular color to the

transformed sequence. 2

Embedding in a chord complex a trajectory built in an

other chord complex enables to give to a musical sequence

a new harmonic color, with conservation of its character-

istic shape. In particular, embedding a trajectory in a dia-

tonic complex has the obvious consequence to give to the

transformed sequence the tonality characterizing the com-

plex.

5.3 Automorphism in a support space

When the chord complex K includes structural symme-

tries, the associated automorphisms define isometries which

can be applied to any trajectory of K. By definition, a com-

plex built from a T/I class is structurally included into

itself at least N times (where N is the division of the oc-

tave). Indeed, the construction method described section 4

ensures that for any pitch class set represented in the com-

plex, its N − 1 transpositions are represented as well. For

a T/I class including 3-note chords, the symmetries of

the corresponding complex (which is a triangular tessella-

tion) can intuitively be associated with the possible “sim-

plex to simplex” superpositions of two copies of the com-

plex, after some translations or rotations. The numerous

symmetries in T/I chord complexes enable a large num-

ber of distinct transformations for a given trajectory. Some

of these transformations can intuitively be interpreted as a

discrete translation or rotation of the trajectory. Some mu-

sical transformations produced by automorphisms in chord

complexes are available in the previous online page.

5.3.1 Discrete translations

Let K be a complex and σ1 and σ2 two 0-simplices of K.

The translation φ which transforms σ1 in σ2 is character-

ized by the interval class i that transforms the pitch classes

associated with this vertices:i = K(σ2) − K(σ1). We ob-

serve that for any vertex σ labeled by the pitch class n, the

transformed vertex φ(σ) will be labeled by the pitch class

n+ i. We thus have for any sequence P :

Tφ(Ai, di) = ({(n+ i) mod N | n ∈ Ai}, di)

The application of a translation on a trajectory in a complex

associated with a T/I class corresponds to a transposition.

If N = 12, it is a chromatic transposition. If N = 7,

it is a diatonic (or modal) transposition. If the sequence

belongs to a tonality, a translation in the associated diatonic

complex will reach to a change of mode e.g., a “major to

minor” transformation.

5.3.2 Discrete point reflections

A discrete point reflection in a complex has for conse-

quence to transform intervals in their opposite. Indeed, ev-

ery direction is associated with a particular interval and the

point reflection reverses directions. The pitch class m la-

beling the center vertex of the point reflection is unchanged

by the transformation. The interval distance separating m
to a pitch class is inverted to produce the new pitch class.

2 The result of the transformation is available online in Midi format on
the page http://www.lacl.fr/˜lbigo/icmc-smc14.
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point 

reflection 

K[3,4,5] K[3,4,5] 

Figure 8. On the left, a trajectory representing the first

measures of the choral BWV256 of J.-S. Bach in K[3, 4, 5].
On the right, a point reflection is applied on the trajectory

and produces a new sequence.

As for the translations, a pitch class is transformed accord-

ing to its value and not to the position of its simplex in the

complex. We thus have for a given sequence P :

Tφ(Ai, di) = ({(m− n) mod N | n ∈ Ai}, di)

Figure 8 illustrates a point reflection applied on a trajectory

in K[3, 4, 5]. The center of the point reflection is a vertex

labeled by the pitch class C. The result of a point reflec-

tion is a pitch class inversion. In chromatic and diatonic

complexes, these inversions are respectively chromatic and

modal.

5.3.3 Other transformations

As mentioned, the two precedent transformations have the

property to produce pitch classes entirely determined by

their original values, and not by the positions of their ver-

tices. Moreover, these two spatial transformations result in

well-known musical operations (transpositions for transla-

tions and inversions for point reflections). On the other

hand, some other automorphisms cannot be specified as

simply on pitch classes. For example, line symmetries or

rotations can transform vertices labeled by a same pitch

class into vertices labeled by different pitch classes. The

same generally applies in the case of the embedding of a

trajectory in a new chord complex. These transformations

don’t have any musical interpretation to our knowledge and

result in new musical operations.

6. SOFTWARES

In this section, we present two softwares enabling to work

with the notions presented on the previous sections: Hex-

aChord which is an application dedicated to music analy-

sis, and the Max object bach.tonnetz which is dedicated to

composition.

6.1 HexaChord

HexaChord
3 is a computer-aided music analysis environ-

ment based on the spatial representations previously pre-

sented. The software provides a visualization of any chord

3 http://vimeo.com/38102171

Figure 9. Graphical user interface of HexaChord.

complex related to a T/I class grouping 3-note chords in

diatonic and chromatic scales. These complexes are infi-

nite two-dimensional triangular tessellations.

Musical pieces are imported as MIDI files. A trajectory is

automatically computed for any pair of musical piece/chord

complex. The trajectory is represented as a path which

evolves in real time in its complex during the play of the

piece. Transformations presented section 5 can all be ap-

plied on a trajectory. The transformed musical sequence

can be exported as a MIDI file. The results on the online

page have been generated with HexaChord.

Other features dedicated to analysis have been integrated

in the application. For instance, HexaChord determines au-

tomatically the chord complex which is the more adapted

to represent a musical sequence. This task relies to the no-

tion of compliance [4] and is achieved by comparing the

compactness of the trajectories representing the piece in

the different complexes.

6.2 The bach.tonnetz object

If one needs to deal with Tonnetz representations interac-

tively, a very natural solution is to handle them in a real-

time environment. An easy way to do it is to take advan-

tage of the bach 4 library, a set of externals and patches

for Max, bringing computer-assisted composition into the

real-time world [12, 13]. Among its features, bach has a

subset of tools dedicated to musical representations, in-

cluding the bach.tonnetz object, which implements and dis-

plays a Tonnetz centered in a given pitch, and generated

by two given diatonic intervals. Nodes in the lattice can

be selected interactively (via mouse and keyboard), or via

incoming messages, containing information in one of the

following formats: cents, note names, pitch-classes, dia-

tonic intervals, coordinates in the lattice space. Elemen-

tary transformations such as translations and rotations pre-

sented in section 5 can be easily performed both via the

interface and via messages.

bach.tonnetz can easily echo the incoming data to its out-

lets, in order to allow real-time modification of the point

coordinates or of the lattice properties. As a result, it is

fairly straightforward to take any incoming flow of notes

4 http://www.bachproject.net
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Figure 10. A patch used by [name omitted for review]

in order to explore musical material as two-dimensional

automata on a Tonnetz. Rules are defined by patching

(in subpatch p life rule), and a few basic interface

commands are given to control the breeding. The output

result is recorded in a bach.roll, for possible further us-

age. User can modify at any moment the Tonnetz structure

(some presets are marked with letters in the upper part of

the patch), as well as its content.

and variously rotate or shift it. To allow a more faithful

representations of MIDI data, each selected node in the

lattice can be given a velocity value, which in turn can be

visualized graphically either by varying node colors or by

adjusting node sizes. Moreover, bach.tonnetz also supports

microtones and just intonation.

Since bach.tonnetz is real-time oriented, it is also an ideal

tool to handle performative and generative processes. As

an example, one can build a patch implementing two-dimen-

sional cellular automata (such as Conway’s game of life,

or one of its possible adaptations for hexagonal grids, see

Fig. 10); this is made even easier by the brand new cage 5

library (a set of high-level abstractions based on bach),

which contains the module cage.life producing two-dimen-

sional cellular automata [14].

7. CONCLUSION

In this paper we have presented in a formal way a general

framework to apply transformations on musical sequences

based on their spatial representations. These representa-

tions make use of the topological structure of simplicial

complexes. Their underlying algebraic structure enables

an elegant formalization of these transformations thanks to

the notion of morphism between different support spaces,

which preserve dimension and neighborhoods between two

complexes. Whereas some of these morphisms correspond

to well-known musical operations, most of them are still

5 http://www.bachproject.net/cage

waiting for pertinent musical interpretation. This is typi-

cally the case of the embedding of a given trajectory into a

new chord complex.
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