
miniAudicle for iPad
Touchscreen-based Music Software Programming

Spencer Salazar

spencer@ccrma.stanford.edu

Ge Wang

ge@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University

Stanford, CA

Figure 1. miniAudicle for iPad.

ABSTRACT

We present a new software application for ChucK pro-

gramming and performance on mobile touchscreen devices,

miniAudicle for iPad. This application seeks to accommo-

date keyboard-based music software development as well

as explore new music programming possibilities enabled

by touch interfaces. To this end, it provides a textual code

Editor mode optimized for touchscreen typing, a live-coding-

oriented Player mode, and collaborative network perfor-

mance via a Connect mode. The combination of these fea-

tures provides a foundation for the exploration of musical

programming on mobile touchscreen devices.

1. INTRODUCTION

Recent years have seen dramatic shifts in mainstream human-

computer interaction, as multitouch mobile phone and tablet

devices have taken hold of the popular technological zeit-

geist. These trends have caused massive changes in both

the way we work with technology and the way we think

about technology. The prevalence of touchscreens has given

software designers and researchers a vast dimension of in-

teraction models to work with, a dimension we have only

Copyright: c©2014 Spencer Salazar et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

begun to explore. The intrinsic mobility and effective ubiq-

uity of these devices have further increased the depth and

transparency of mainstream computing.

In this work we examine an often overlooked possibility

of mobile touchscreen computing, that of music software

programming. To this end, we have designed and imple-

mented an iPad application for real-time coding and per-

formance in the ChucK music programming language [1].

This application shares much of its design philosophy, source

code, and visual style with the miniAudicle editor for desk-

top ChucK development [2], and thus we call it miniAudi-

cle for iPad.

The goals miniAudicle for iPad are to provide a satisfac-

tory method for creation and editing of non-trivial ChucK

code, and to fully leverage the interaction possibilities of

mobile touchscreen devices. Our approach to these goals

is to provide three complementary modes: Editor mode,

Player mode, and Connect mode. Editor mode aims to pro-

vide the best code editor possible given the limitations of

typing text on a touchscreen. Player mode allows users

to play and modify scripts concurrently using ChucK’s in-

trinsic on-the-fly programming capabilities. It aims to en-

able multitouch live-coding and performance techniques

that would be difficult or impossible on traditional desk-

top computers. Connect mode extends Player mode to a

networked performance, in which multiple players on net-

work connected iPads collaboratively live-code music in

real-time. We believe the combination of these three sys-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 686 -

mailto:spencer@ccrma.stanford.edu
mailto:ge@ccrma.stanford.edu
http://creativecommons.org/licenses/by/3.0/

tems makes miniAudicle for iPad a compelling mobile sys-

tem for music programming and live coding.

2. RELATED WORK

Naturally, much of this work draws from desktop computer-

based environments for music programming, such as the

original desktop miniAudicle [2], the Audicle [3], and Su-

perCollider [4]. Each of these systems combines conven-

tional code development with performative interfaces, ex-

plicitly enabling live coding of music [5]. The CoAudicle

extends musical live-coding to interactive network-enhanced

performance between multiple performers [6].

More recent developments in live-coding software sys-

tems have lead to ixi lang, which complements SuperCol-

lider with a domain-specific language designed for live-

coding [7], and Overtone, which uses the Clojure program-

ming language to control SuperCollider’s core synthesis

engine [8]. Ableton’s Live software is not technically a

programming system, but its model of sequencing distinct

musical “objects” has influenced our development of mini-

Audicle for iPad’s Player mode [9].

In the domain of general purpose computing, TouchDe-

velop is a touch-based text programming environment de-

signed for use on mobile phones, in which programming

constructs are selected from a context-aware list, dimin-

ishing the dependence on keyboard-based text input [10].

Codea is a Lua-based software development system for

iPad in which text editing is supplemented with touch ges-

tures for parameter editing and mapping [11]. Many canon-

ical interactions for music sequencing and programming

on a touchscreen device can be traced back to the Reactable

[12] and the work of Davidson and Han [13], two early ex-

plorations of the application of touchscreen technology to

computer music.

A number of software applications from iPhone devel-

oper Smule have begun to delineate the space of possibil-

ities for mobile music computing [14]. Ocarina is both a

musical instrument, designed uniquely around the iPhone’s

interaction capabilities, and a musical/social experience, in

which performers tune in to each others’ musical rendi-

tions around the world [15]. World Stage takes this model

a step further, by congregating groups of users into a live

“American Idol”-like panel for critiquing and rating perfor-

mances on a mobile phone instrument [16]. The concep-

tual background of these endeavors stems from research in

the Princeton Laptop Orchestra [17], the Stanford Laptop

Orchestra [18], and the Small Musically Expressive Lap-

top Toolkit [19]. Each of these efforts examines the explicit

affordances of the laptop as a musical instrument in its own

right, rather than as a generic unit of computing.

3. BACKGROUND AND MOTIVATIONS

In our experience, mobile touchscreen devices have been

largely overlooked for use in computer music software de-

velopment. As these technologies have become widespread,

it is not sufficient to sit back and watch inappropriate, pre-

existing interaction models be forced into the mobile touch-

screen metaphor. Rather, it is incumbent upon the research

community to explore how best to leverage the unique as-

sets and drawbacks of this new paradigm, which is evi-

dently here to stay. Similar trends might be seen in the shift

in computer music from mainframes and dedicated syn-

thesizers to the personal computer in the 1980s, and then

to the laptop, now ubiquitous in modern computer music

performance practice. As these computing paradigms gave

way from one to another, the software tools and interaction

metaphors adjusted to better take advantage of the domi-

nant paradigm.

Therefore, our overriding design philosophy for miniAu-

dicle for iPad was not to transplant a desktop software de-

velopment environment to a tablet, but to consider what in-

teractions the tablet might best provide for us. At the same

time, it is not entirely reasonable to completely discard the

desktop metaphor, which, in our case, is that of typing code

into an editor. Ultimately, the fundamental unit of ChucK

programming is text.

For these reasons we have firstly sought to create the best

code editing interface we could for a touchscreen device.

Typing extensive text documents on touchscreens is widely

considered undesirable. However, using a variety of pop-

ular techniques like syntax highlighting, auto-completion,

and extended keyboards, we can optimize this experience.

With these techniques, the number of keystrokes required

to enter code is significantly reduced, as is the number of

input errors produced in doing so. Additional interaction

techniques can improve the text editing experience beyond

what is available on the desktop. For example, one might

tap a unit generator typename in the code window to bring

up a list of alternative unit generators of the same category

(e.g. oscillators, filters, reverbs). Tapping a numeric literal

could bring up a slider to set the value, where a one-finger

swipe adjusts the value and a two finger pinch changes the

granularity of those adjustments.

Secondly, we believe that live-coding performance is a

fundamental aspect of computer music programming, and

contend that the mobile touchscreen paradigm is uniquely

equipped to support this style of computing. Live-coding

often involves the control and processing of many scraps of

code, with multiple programs interacting in multiple levels

of intricacy. Direct manipulation, the quintessential feature

of a multitouch screen, might allow large groups of ”units”

— individual ChucK scripts — to be efficiently and rapidly

controlled in real-time. This is the basis of miniAudicle for

iPad’s Player mode, in which a user assembles and inter-

acts with any number of ChucK programs simultaneously.

Furthermore, we fundamentally believe in the power of

the network. As seen in Ocarina, World Stage, and re-

lated systems, musical interactions mediated by a wide-

area computer network can create unique musical experi-

ences among its users. These interactions are distinctive

from those possible in the real world, being effectively

anonymous and instantaneous, and having the potential to

engage countless users on a massive scale. We have sought

to apply these concepts to musical live-coding in Connect

mode, an extension to Player mode that enables collabora-

tive musical programming over the network.

Lastly, we are interested in the physicality of the tablet

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 687 -

form-factor itself. The iPad’s hardware design presents a

number of interesting possibilities for musical program-

ming. For instance, it is relatively easy to generate au-

dio feedback by directing sound with one’s hand from the

iPad’s speaker to its microphone. A ChucK program could

easily tune this feedback to musical ends, while the user

maintains manual control over the presence and charac-

ter of the feedback. The iPad contains a number of envi-

ronmental sensors, including an accelerometer, gyroscope,

and compass. ChucK programs that incorporate these in-

puts might use them to create a highly gestural musical

interaction, using the tablet as both an audio processor and

as a physical controller.

4. INTERACTION DESIGN

Interaction in miniAudicle for iPad is divided between three

primary modes, Editor mode, Player mode, and Connect

mode, described individually below. Several interface el-

ements are common to all three modes. First of these is

a script browser which allows creating, managing, and se-

lecting individual ChucK programs to load into either mode.

Views of ChucK’s console output (such as error messages

and internal diagnostics) and a list of the ChucK shreds

(processes) running in the system are available from the

main application toolbar. This toolbar also contains a switch

to toggle between Editor and Player modes, while Connect

mode, an enhancement of Player mode, is accessed from a

button within that mode.

4.1 Editor

Editor mode is the primary interface for writing and testing

ChucK code. This mode is centered around a touch-based

text editing view, in which a single ChucK source docu-

ment is presented at a time (Figure 2). The document to

edit can be changed via the script browser. Once a doc-

ument is loaded, the text view provides a number of fea-

tures common to programming text editors, such as syntax-

based text coloring and integrated error reporting. Addi-

tionally, the on-screen keyboard has been supplemented

with ChucK-specific keys for characters and combinations

thereof that appear frequently in ChucK programs. These

additional keys include the chuck operator (=>) and its

variants, mathematical operators, a variety of brace char-

acters, additional syntax characters, and the now/dac key-

words.

This mode also features buttons for adding, replacing,

and removing the currently edited ChucK script, enabling a

small degree of on-the-fly programming and performance

capabilities.

4.2 Player

Player mode is designed for live performance, on-the-fly

programming, and real-time musical experimentation . In

this mode, selected ChucK scripts are displayed as small

tabs in a large open area (Figure 3).

The script tabs can be rearranged in the space by mov-

ing them with touch, with new tabs created via the script

browser. Each tab has prominent buttons to add the script

Figure 2. Editor mode.

the virtual machine, replace it, and remove it, enabling

basic on-the-fly programming of each script in the player

(Figure 4). 1 A script can be added multiple times, and cur-

rently running scripts are visualized by one or more glow-

ing dots on that scripts tab. Pressing a dot removes the

iteration of the script that that dot represents. An arrow

button on the tab pops open a mini-editor for that script,

from which the full editor mode can also be opened if de-

sired.

Pressing and holding the add button will cause three more

buttons to appear below it, on the left, and on the right: one

causes the program to loop infinitely (until it is manually

removed), one loops it a user-selected number of times,

and one allows sequencing a different script after this script

completes. Finite looping and sequencing can be used in

conjunction with one another, allowing scripts to run a

number of times before advancing to the next script in the

sequence. Pressing and holding any tab outside of the but-

ton areas will cause delete buttons to appear above all tabs,

a common interaction for deleting items from collections

in touchscreen apps.

The design of Player mode is theoretically not limited

to the touchscreen environment; one can easily imagine

a similar design for desktop computers using mouse-and-

keyboard interaction. However, touchscreens allow a level

of direct, simultaneous interaction with Player mode that is

not feasible using keyboard-and-mouse. Using touch con-

1 A brief ChucK on-the-fly programming primer: adding a script
causes it to be compiled and executed, generating whatever sounds and
manipulating whatever data it was programmed to do. A script running in
the virtual machine is referred to as a shred. Replacing it causes the cur-
rently executing version of the shred to be removed, and the latest version
of the script to replace it. Removing it simply stops it from executing.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 688 -

Figure 3. Player mode.

trol, multiple scripts can be fired off or removed instantly,

different combinations of shreds can be quickly configured

and evaluated, and multiple edited scripts can be replaced

on-the-fly in tandem. These sorts of interactions are not

impossible in mouse-and-keyboard environments, but typ-

ically are held back by the sluggishness of mouse naviga-

tion, or require the use of arcane key command sequences.

Figure 4. An individual tab in player mode. In addition

to buttons for on-the-fly programming, the green dots rep-

resent individual program instances (shreds) that are cur-

rently running. Pressing a green dot removes that instance.

Pressing the disclosure arrow opens a mini-editor for the

script, and modified versions of the script can replace a

running shred.

4.3 Connect

Connect mode, an extension of Player mode, allows mini-

Audicle programmers to collaboratively perform and hack

ChucK code over the network (Figure 5). In this mode,

multiple Player sessions from disparate iPads are essen-

tially combined into a single session. As networked play-

ers add, remove, and modify programs, these changes are

propagated to each other player in the session, constructing

a single, collaborative performance. Furthermore, looping

and sequencing features of Player mode are also enabled in

Connect mode, allowing for advanced musical twists and

segues.

Connect mode is initiated by pressing the “Connect” but-

ton in Player mode, opening a small dialog to allow setting

connection parameters, such as username, geographic lo-

cation, and whether to join an existing session or to create

a new one. Once a user is connected to a session (possibly

one that he or she just created), a list of other users in the

session (if any) is displayed. Each ChucK script tab dis-

plays the username of the player who originated it. Tabs

are also color-coded to indicate which are owned by the

local player and which are owned by remote players — a

player can only interact with scripts he or she created, al-

though the source code for each script can be examined

by anyone in the session. We intend for the ability to view

another player’s code to spur code sharing and the dissemi-

nation of music software techniques. Finally, a player may

disconnect from the session at any time by pressing a “Dis-

connect” button.

Figure 5. Connect mode.

4.3.1 Network Back-end

The network interactions that encompass Connect mode

are supported by a central miniAudicle server, which man-

ages players, sessions, and the interactions between them.

The server software is implemented in Python using the

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 689 -

Twisted framework, 2 and uses Representational State Trans-

fer (REST) over HTTP to communicate with the client.

Each action a player takes in Connect mode is encoded as

a JSON data structure, and uploaded to the server.

While engaged in a Connect session, the client software

continuously polls the server for new actions, such as a

user adding a shred or modifying and replacing an exist-

ing shred. When a new action is received from the server,

it is immediately enacted on the client. In effect, each

client of the session simultaneously runs every ChucK pro-

gram from every user in the session. As a result, sample-

accuracy between every shred is maintained in a given ses-

sion on a given client. Using ChucK’s innate strong-timing

functionality, intricate and consistent rhythmic patterns can

be constructed between programs from multiple individu-

als in a session. However, latency must obviously exist be-

tween when, for example, one user adds a shred on his own

tablet, and when that action is reflected on another player’s

tablet over the network. As the practice of networked live-

coding in ChucK matures, we anticipate the development

of software techniques to address the drawbacks of these

physical realities.

5. FUTURE WORK AND CONCLUSIONS

Of critical importance in any interactive software system is

the evaluation of that system with respect to its goals and

overall user experience. We intend to assess miniAudicle

for iPad in these regards in upcoming research efforts. This

might involve formalized user testing, with users spanning

a range of skill levels in ChucK programming, statistical

analysis of Connect-mode performance sessions, and the

development of touchscreen-based live coding performances

in the concert setting.

Yet to be explored in this system is the deeper social dy-

namics of a networked live-coding community, and how

the design of the Connect system might provoke or dis-

courage certain musical behaviors. For example, networked

live-coding sessions could be opened for anyone to lis-

ten in, and especially popular or productive players on the

miniAudicle network might be promoted within it. We

chose not to enable explicit communication between Con-

nect players other than the ChucK code itself; it merits con-

sideration whether allowing in-session chat would lead to

stronger musical collaboration, or if it would distract from

purely musical creative processes. The experience of de-

veloping and supervising the World Stage [16] provides

many lessons for such building of online musical commu-

nities.

We believe that miniAudicle for iPad provides a com-

pelling foundation for the exploration of music program-

ming and live-coding performance on mobile touchscreen

devices. A touch-augmented text editor, advanced live-

coding functionality, and networked performance features

combine into a computer music environment that leverages

the principal features of touchscreen computing while re-

taining the immense expressivity of textual programming.

As we apply final touches and polish, we will release mini-

2 https://twistedmatrix.com/

Audicle for iPad both in the Apple App Store and as source

code under an open source license. We hope that this work

might help to compel further consideration and research of

music programming on mobile touchscreen systems.

6. REFERENCES

[1] G. Wang, “The ChucK audio programming language:

A strongly-timed and on-the-fly environ/mentality,”

Ph.D. dissertation, Princeton University, Princeton, NJ,

USA, 2008.

[2] S. Salazar, G. Wang, and P. Cook, “miniAudicle and

ChucK Shell: New interfaces for ChucK development

and performance,” in Proceedings of the International

Computer Music Conference, 2006, pp. 63–66.

[3] G. Wang and P. R. Cook, “The Audicle: A

context-sensitive, on-the-fly audio programming en-

viron/mentality,” in Proceedings of the International

Computer Music Conference, 2004, pp. 256–263.

[4] J. McCartney, “Rethinking the computer music lan-

guage: Supercollider,” Computer Music Journal,

vol. 26, no. 4, pp. 61–68, 2002.

[5] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,

“Live coding in laptop performance,” Organised

Sound, vol. 8, no. 3, pp. 321–330, 2003.

[6] G. Wang, A. Misra, P. Davidson, and P. R. Cook,

“CoAudicle: A collaborative audio programming

space,” in In Proceedings of the International Com-

puter Music Conference, 2005.

[7] T. Magnusson, “ixi lang: a SuperCollider parasite for

live coding,” in Proceedings of International Computer

Music Conference. University of Huddersfield, 2011,

pp. 503–506.

[8] S. Aaron and A. F. Blackwell, “From Sonic Pi to

Overtone: Creative musical experiences with domain-

specific and functional languages,” in Proceedings of

the First ACM SIGPLAN Workshop on Functional Art,

Music, Modeling and Design. New York, NY, USA:

ACM, 2013, pp. 35–46.

[9] “Ableton Live,” https://www.ableton.com/en/live/.

[10] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahn-

drich, “TouchDevelop: Programming cloud-connected

mobile devices via touchscreen,” in Proceedings of

the 10th SIGPLAN Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Soft-

ware, ser. ONWARD ’11. New York, NY, USA:

ACM, 2011, pp. 49–60.

[11] S. San̈s, “Codea,” http://twolivesleft.com/Codea/, ac-

cessed: 2014-3-28.

[12] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrun-

ner, “The reacTable: Exploring the synergy between

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 690 -

https://www.ableton.com/en/live/
http://twolivesleft.com/Codea/

live music performance and tabletop tangible inter-

faces,” in Proceedings of the 1st International Confer-

ence on Tangible and Embedded Interaction, ser. TEI

’07. New York, NY, USA: ACM, 2007, pp. 139–146.

[13] P. L. Davidson and J. Y. Han, “Synthesis and control on

large scale multi-touch sensing displays,” in Proceed-

ings of the 2006 Conference on New Interfaces for Mu-

sical Expression. IRCAM/Centre Pompidou, 2006,

pp. 216–219.

[14] G. Wang, G. Essl, J. Smith, S. Salazar, P. Cook,

R. Hamilton, R. Fiebrink, J. Berger, D. Zhu,

M. Ljungstrom et al., “Smule= sonic media: An inter-

section of the mobile, musical, and social,” in Proceed-

ings of the International Computer Music Conference,

2009, pp. 16–21.

[15] G. Wang, “Ocarina: Designing the iPhone’s magic

flute,” Computer Music Journal, vol. 38, no. 2, 2014.

[16] G. Wang, J. Oh, S. Salazar, and R. Hamilton, “World

Stage: A crowdsourcing paradigm for social/mobile

music,” in Proceedings of the International Computer

Music Conference, 2011.

[17] S. Smallwood, D. Trueman, P. R. Cook, and G. Wang,

“Composing for Laptop Orchestra,” Computer Music

Journal, vol. 32, no. 1, pp. 9–25, Spring 2008.

[18] G. Wang, N. Bryan, J. Oh, and R. Hamilton, “Stanford

Laptop Orchestra (SLOrk),” in In Proceedings of the

International Computer Music Conference, 2009.

[19] R. Fiebrink, G. Wang, and P. R. Cook, “Don’t forget

the laptop: Using native input capabilities for expres-

sive musical control,” in Proceedings of the 7th inter-

national conference on New interfaces for musical ex-

pression. ACM, 2007, pp. 164–167.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 691 -

