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ABSTRACT

This paper describes AutoChorusCreator(ACC), & sy
tem capable of producing, in real-time, a variety of four-
part harmonies from lead sheet music. Current algorithm
for generating four-part harmony have established a hig|
standard in producing results following rules of harmony
theories. However, it is still a challenging task to increase
variation in the outpuDetailed constraints for describing
musical variation tend to complicate the rules andhmet
0ds used to search for a solution. Reducing constrents
gain degrees of freedom variation often lead to gene
ating outputs which do not follow the rules of harmon
theories. Our system ACC is based on a novel approac
of generating four-part harmony with variatidngincor-
porating two algorithms, statistical rule application and
dynamic programming. This dual implementation enables
the system to gain the positive aspects of both algorithms
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Evaluations indicate that ACC is capable of generating
four-part harmony arrangements of lead-music in real-
time. We also confirmed that ACC achieved generating
outputs with variations without neglecting to fulfil rules
of harmony theories.

Figure 1. System Overview.

replacing some of those chords with other replaceable
chords and 4) adding harmonic interest to the piece by
adding non-harmonic tones [15]. Harmonisation and re-
1. INTRODUCTION harmonisation are important aspects in each of these steps
Automatic composition has captivated the minds of both This fact makes the appropriate implementation af ha
musicians and scientists for decades and many agproac mony theories crucial in developing automatic conos
es have already been attempirethe field of information ~ tion systems that incorporate aspects of tonality as those
science [1, 2, 3]. Some of these include constraing-sati found in classical music
faction [4 5, 6, example based approaches [7], genetic A particular task often dealt with in the study ofaut
algorithms [8, 9], probabilistic modelling [10, 11] and matic harmonisation is that of harmonising a classical
rule based applications [1LZecently, technologies a@fi four-part chorale from a single melody line. Allan used a
inally from the field of music information retrieval (MIR) ~data set of chorale harmonisations to train Hiddem-Ma
are also being used to support people who create musicadov Models to create four-part harmony [18uzuki also
works [13, 14]. used probabilistic models for automatiafegpart harno-
Harmony is an important element in many music styles hisation [17], comaring system outputs for when chord
especially in those of classical mudiamura describes an  data was and was not used.
academic process of musical composition as 1) choosing Rule-based approaches have also been exploited for
a simple cadence of chords, 2) deciding a melody linefour-part harmonisation. Ebgitu developed a rule-based
which follows the structure of the sequence of chords, 3) system with over 270 rules and used a logic programming
language for harmonising four-part chorales]{I2hon-
Amnuaisuk also created a rule-based system andg co
pared it with a genetic algorithm system which had the
same explicit rules of harmonisation implemented in it
[8]. Biles used genetic algorithms in creating jagr i
provisations [9]. MacCallum also used genetic algorithms
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and incorporated mass consumer evaluations to iavest cal applications of musal composition While it is reb-
gate the composition of music through Darwinia-pr tively easy to achieve one or two of these characteristics
cesses [18]. in a harmonisation system, we have found the simedtan
While many four-part harmonisation systems acqaire ous attainment of all three to be more difficult. Osa-
high level of musical qualityit is still a challenging task  son for this would be that a typical harmonisation system
to produce a variety of outputs from a single inpiar- will usually apply onlya single algorithm (e.g. rule appl
monisation systems produce chorales that fulfii many cation, algorithmic search, pattern matching) to complete
rules of music theory. Statistical models have been r a given task. Implementing a single algorithm leads to a
ported to learn different rules of the theory of harmony assystem which is an expert for one task, but less effective
implicit representations in the system itself, while rule- for another.
base systems are successfully producing complicated We have developedAutoChorusCreator (ACC), a
arrangements that follow specific stylddowever, the harmonisation system that incorporates multipleoalg
variation in output of these systems is often limitedydea rithms into the harmonisation process. By implementing
ing us an area within the field of automatic harmonisation multiple algorithms, ACC benefits from the positive- a
with potential still to be exploited. pects of each algorithm while covering their weaknesses
When aiming to gain diversity in harmonisation, we with another. ACC simultaneously achieves all three r
find neither increasing nor decreasing rules is the optimalquirements listed above, thus providing a robust yet fle
solution. If a system extends its set of rules to incorporateible harmoniser that can be used in practical contexts of
rules that describe new styles of music, rule formats andmusic composition.
search methods can become complicated. This will result
in the system becoming less efficient than it originally 2.2 System Overview
was, often extending the execution time aReducing . _ . .
rules to gain extra degrees of freedom will result ie-a r ACC IS an automatic four-part choral music harmoniser
duction ofmusical quality in the output when held up to USers input data of lead music (sheet music with one
scrutiny against theories of harmony. Both extending andMelody line and chord notations) from which the system
reducing rule sets are still a challenging solutiomdd- creates a score designed for a four-part voice ensemble.
ing diversity to automatic harmonisation. A new mech ACC is implemented in Java and uses MusicXML for
nism is needed if the system is to produce diversedvarm input and output data format.
nisations effectively. ACC consists of two modules, each using differdnt a
The rest of this paper explains how we achieved thatgorithms. The first module creates an initial arrangement
diversity through the combined implementation of a rule- from the input data using statistical applications of & he
based application and dynamic programming. In section Zistic rule set. This initial arrangement is then passed on
we describe some characteristics of a practical automatiao the second module, which uses dynamic programming
harmonisation system and the technology requirements tqo search for the optimal output out of those similar to the
produce its characteristics. We also explain the details ofinitial arrangementEach rule in the heuristic rule set in
the system we implemented, listing some examples of thene first module is applied to the input music according to
rules used in each algorithm. In section 3, we note the, ropapilistic model with parameters alterable by the
evaluations we made of the system before concluding in gq,
section 4 hW'th a sdu][nmar):jof t|h|s work aadiiscussion The evaluation functions in the second module mostly
on areas that need future development. consist of rules derived from classical theories of lmarm
ny, but also include functions to evaluate other features of
music that do not relate to harmortyach function is
weighted by a parameter and is applied to a pieceusf m
2.1 System Concept sic to produce a cumulated evaluation score which is then

A robust harmonisation system with practical applic ~used in the search process. By altering the parameters in
tions would have to include the following characteristics. €ach module, ACC is ablef producing multiple &
rangements of chorale music from a given input data. We
1. Is able to produce a variety of outputs, prafer have listed a diagram of the system overview in Figure 1.
bly according to user-specified styles or rcha Below we will describe in detail how we have intagra

2.METHOD

acteristics. ed these two algorithms to produce a composition system
that meets the three criteria we discussed in the section
2. Is able to be executed in real-time. above.

2.2.10utput Diversity

Users have diverse preferences regarding music even
within the same music genre, and so a practical harmon
sation system must also incorporate diversity into its sy
tem output. Harmonic variety not only makes a system

These are some fundamental aspects a system mu%?terestlng., but also creates a system potentially aacept
le by a wider range of users.

simultaneously achieve if it is going to be used in pract

3. Is able toproduce “good quality” harmony—
harmony that follows basic princgd of
style/structure or that can be musically unde
stood uniformly by a general audience.
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Harmonisation systems often focus on finding optimal G G , G <
chord progressions that match a given melody, but spend# s !
little effort finding the best combination of notes within
each chord. Although the decision of chord progression
is an important procedure, it is only a small part of the
harmonisation process and a limited aspect of output d
versity. Chord progressions determine the spacen fro G G [ G

M
MR

Lz
-

Figure 2. Example of Heuristic Rule (1).

which the note in each part must be chosen for, but it is Z%——F—= |:> S
other musical qualities (e.g. movement in a single part, ¢ S '

reflection of musical intensity in the melody to other Figure 3. Example of Heuristic Rule (2).
parts technical interest matching each perforra@hys-
cal ability) that determine the final output. These musical Each rule n is only applied to an applicable passage of

qualities we will cal‘musical features. ' music at the probability o0 < p, < 1). This allows for a
The two algorithms implemented in ACC assist each diverse range of initial arrangements which are then
other in achieving diverse musical featuesoutput a- passed on to the dynamic programming module. Notice

rangementsAs will be discussed in section 2.2.3, dyma  these rules are designed to produce structural diversity
ic programming was incorporatexb the second module  only and do not directly represent any particular music
to assist in finding an optimal output within a reasonable theory.

amount of time. Although dynamic programming is an

efficient search algorithm, it will only find one output 2 2 2Search Area Reduction

from a given input. To create various outputs from evenThe computational time of harmonisation systems i
the same input, ACC first creates an initial arrangementcrease exponentially with the length of the music given as
using statistical rule application and then passes this on afhput. This makes search area reductions essential in
the seed for the search algorithm in the dynami@ pr keeping system execution time minimal. Search agea r
gramming phase. Each heuristic rule is applied to po ductions can be implemented as computationah-tec
tions of the song at random, producing a different initial niques borrowed from studies of search algorithmssor
arrangement for the dynamic programming module to active search area reductions in the algorithm itself using
work on each time the programme is executed. knowledge of the music being composed. This musical

We compiled a set of heuristic rules from observations knowledge can be constructed manually from musio-the
of pre-composed pieces of music to use in the first-alg €S or learned automatically from corpuses of pre-
rithm. The compiled set of ten rules was far from being a 8XiSting compositions through machine learning.

complete implementation of musical arrangementgroc | "€ second module of ACC consists of a dyname pr
dures. We did find, however, that this limited set of rules 3"amMming algorithm. Dynamic programming is a cemp

was stil adequate in examining whether the two- tational algorithm which can be applied to problems

. . . S where the main problems subdivided into multiple sub-
algorithm implementation of the harmonisation process

could produce various arrangements from the same iecgroblems, and the accumulation of optimal solutions from
of mus?c 9 P ach sub-problem composes the optimal solution for the

. main problem [19]. Dynamic programming has been used
The rules were implemented so that they cor@lliCt i, gther music composition systems also, such agFuk
simple structural alterations in each accompaniment part.yam,S system Orpheu2()]. In our system, we haveka
ACC first chooses for each part a note contained in thegp, the task of harmonising the whole song and broken it
chord listed in each measure. If there are no chora-not down into a group of the subtasknding the optimal
tions in a given measure, then the previous chord notatiorcombination of notes played simultaneously across four
is used. Once the first note for each measure has beeparts at each point in the sond@y finding the optimal
chosen, ACC applies rules such as those listed below t@ombination of notes at each moment of the song, our
produce more notes to fill each measure. system will find a desirable solution to the harmonisation

task.

e If two consecutive notes in the same part have TO evaluate each set of four notes, we have chosen to
the same pitch, move the later note to anotherinduqe the thepry of harmony of classical music as will
pitch within the same chord (Figure 2.) be discussed in section 2.2.3. The classical theory of

harmony does not only evaluate each group of notes on
their own, though. Harmony theories classify groups of
pitches into‘“chords” Evaluation is conducted on the
structure of each individual chord and also its relation to
: . the chords surrounding it. In the current version of ACC,
length. The second, new note is raised fo the we have implemented the rules which look at thecstru

next note in the key creating“atepping &f- ture of each chord and the relation to its preceding chord
fect (Figure 3.) only.

e |f the distance between two consecutive notes
in a part is a third, threhalve the length of the
first note and add a second note of the same
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Rule A 1 : The only note you may exclude from a chord is the 5th note of the chord.

. . . . . . Ngppr. - Number of abbreviated notes in the
You may also exclude the tonic note if the chord is a dominant fifth/ninth chord. b

chord that must not be abbreviated

n
% : if (chord = 7th chord or 9th chord) Nchora : Total number of notes that comprise
Tchord the chord
h= "
——abbr . else Porn : The pitch number of the 9th note, in
Nenora = 1 MIDI notation
Pehora : The pitch number of the tonic note,
in MIDI notation
Rule A 3 : The 9th note of a dominant ninth chord must be played at least an octave and Pmax,pioni; - 10 highest possible pitch of the part

a second (14 semitones) above the tonic note. with the tonic note, in MIDI notation

: The lowest possible pitch of the part

|min(p9m — Pronic — 14, 0)| Pmin,porn
with the 9th note, in MIDI notation

(pmﬂx-Ptoriic + 14} ~ Pminpocy

f3

Figure 4. Examples of continuous evaluation functions based on classicalofutesmony from 21], used in the dynamic pr
gramming module.

The dynamic programming module takes the initial a rhythm, have been formulated over time, the theory of
rangement composed in the rule-based module and co harmonyis the most refined and formalised of them all.
ducts a search by altering each note by d semitones in A difficulty found with applying rules of harmonisation
either direction. The distance d therefore is the key factorin a computer programme is that some combinations of
in determining the extent to which dynamic programming notes can only be attained if there is a correct sequence of
conducts its search. The number of possible combinationsiotes leading up to, and after, that point in the music. By

of notes for an entire song can be annotated as unintentionally choosing one different note combination
somewhere in the song, a system could limit itself from
(2d + 1) (D ever reaching a particular combination of notes elsewhere

in the music One must keep in mind search algorithms
whered denotes the number of semitones a note can beeed flexibility to search multiple combinations of notes
moved in one direction andis the number of chords throughout the whole song to find various output note
(combination of four notes) to be analysed in a song. sequences
As can be seen from equation 1, the computational ime We have implemented both functions made from rules
will increase exponentially as the length of the samg i Of harmony and functions that describe musical structure
creases. This is why we have limited the search to thosdmusical features) in the search algorithm of the second
songs similar to the initial song composed by the first module. The list of functions regarding the theory of

module. harmony was compiled from Geidai Wasel]j the text
book on the theory of harmony of classical music most
2.2.3Evaluation Using Music Theorgnd Musical Fe- used by educational institutes in Japan [22]. Geidai \Wasei

tures like other formalised theories of harmony, consists of a
In one way or another, every harmonisation system i set of rules prohibiting specific combinations of pitchgs
cludes an evaluation module. This could be implemented(€-9- Seventh notes of a chord must not be doubled in a
in the search process so that the system makes an implicgh°rd) and chord progressions (e.g. no parallel fifths).
evaluation at every decision. It could also be implemen | N€ €asiest implementation of this type of rule is in the
ed at the end of the composition cycle as an explicit eva form of a Boolean function which determines whether the
uation function. The former would evaluate local comb "ule is broken at a certain point in the music or not.,This
nations of note while the latter could take into account thehowever, does not allow for discrimination between two
global structure of the entire musical piece. The evalu SONgs which both break a certain rule but in different
tion process could also be excluded from the programmed¥@ySs (€.9. two songs may have a doubled seventh note,
system and given to the user as a manual operation. Thigut in fact one song may have the seventh note tripled
evaluation would reflect the user impressions of the-co Ot just doubled). Therefore, when possible, we have

posed harmony. In general, the evaluation, and therefordMPlemented the rules with a continuous evaluatiorzfun
the definition of“good harmony” will contain three & tion to give a more discriminative preference ordering to

pects; local structure, global structure and user igapre @nY tWo pieces of music. See Figure 4 for examples of
sion. We have added the evaluation procedure into outhese functions. A total of 13 rules (A1-AS, B1-B3 and
system as weighted functions used in the search-alg C1-C5) from Geidai Wasei were implemented as eaalu
rithm of the second module. tion functions in the second algorithm of ACC.

Having formulated theories of musical structure is a Along with rules of formal musical theory, we haie a
particular characteristic of classical and popular WesternSC incorporated rules regarding other musical features,
music. While many theories for each of the individual such as the structure of each part and the number of notes

elements of these music, such as melody, harmony andf each bar of music. Many rules from the theory af ha

-1019 -



Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

mony exclude specific combination of notes from the implemented explicitly in the rule bas@nly using this
final output. However, there are very few rules which module limits the diversity of output arrangements as
recommend a preferable combination of notes. Werinco they are solely dependant on the set of rules provided in
porated functions that evaluate musical features, not justhe system. The amount of explicit knowledge
harmony, so that we could manipulate the final output represented in the rule set alone determines the variety in
through explicit knowledge, rather than allowing the-sy the output.
tem to make random decisions from arrangements with
similar harmonic evaluations. = =
Musical features evaluated in the dynamic progra
ming algorithm included those such ‘@mount of pitch
movement in each pdriand “vocal rang®. Users input
their preferred amount of each musical feature, such as

.......

“minimal pitch movemeritor “vocal range no larger than = 5 e = e e
one and a half octaves, starting from middl¢ Each " |' T
function then evaluates how different a musical areang — ; e e

= = 7 C | |

ment differs from the us& preference, and gives areo
responding score. The evaluation result of each function Figure 6. System output made using the rule-base a
is weighted and added to provide one final score which  piication module only.

represents that arrangement. That score is then used in
searching for an optimal arrangement as the final output.
Altering the weights on each function affects the amount
of influence each represented musical feature has on th
search process. Adjusting these weights gives the use
some control over the ultimate output produced from a
given input.

As seen in Figure 7, a combined application of both the
heuristic rule-base module and dynamic programming

odule produces an arrangement of music not attainable
gy just either of the algorithms. Each voice is altered to

etter fulfil rules of harmony and other features ieapl
mented in the dynamic programming médurhe con-
sistent movement observed in the tenor and bass parts of
Figure 5 (dynamic programming only) has been altered to
a moe varied arrangement.

3.RESULT

3.1 System Performance

F c7

. . . h_ —
In this section, we describe the performa_ncz_a _of O8F Sy {,g = S
tem when using the two system modules individually and i
combined. We have used a popular childsesong“If = 1 e

You’re Happy and You Know’ltas the example input, ’ '{ f ik f * d ' ° *

as shown in each of the figures below. 51 Efe v e o o
In Figure 5, we show an example output when using

dynamic programming only. Each part tends to move in a

monotonous way, as can be seen in the up-dowremov

ments of the tenor and bass parts. This is because when Figure 7. System output using both rule-base agplic

using dynamic programming only, each part starts with  tion and dynamic programming modules.

the same note right through the measure. The same rulesFigure 8 shows another example of using both modules

of harmony are applied to every set of chord, forming but with some of the parameters altered. Compared to the

Fl
ar gl
Fl

el
™
®

similar movements through each measure. output of Figure 7, this outputhas less movement in the
accompaniment parts, providing an easier arrangement
_ 5 F 7 for amateur performers to use. Notice, though, how there
,’é.g ==c o == === is still movement in the tenor and bass parts at the end of
. g i measure two. The system has not simply allocated the
_(.r_’,;;‘ —————————— same note to each part throughout the measure. This
. . : - i . i dee |7 small variation in arrangement is caused by the enov
BE= = et e e e e = ment in the melody line _and. dynamic programming
searching for the best combination of notes in the last two
T3 e e e e . chords of that measure, yet with as minimal movement as
il T T T ' possible.

Figure 5. System output made using the dynamioc-pr
gramming module only.

Figure 6 shows an arrangement composed using the
rule-base module only. Music made using heuristic rules
only are prone to go against basic rules of harmony (e.g.
parallel movements between parts) as they are not
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N N F c The system execution time is reasonable for real-time
':,9? ==c==mmem— applications. In thisang's case, ACC took roughly 60
E L i seconds to compose the accompaniment parts and create
e the output data. This is much shorter than the totad-dur
G i3 sdddsded |* tion of the original song, which is 4 minutes and 48 se
D e = = == ==n onds. ACC is capable of composing choral arrangements
>4 S B L .
""" much faster than the speed a song is played at. As the
S e search only looks at the relation of chords with those pr
- o N B A SR, ceeding it, the output could be produced a bar at a time,
Figure 8. System output using both rule-base aplic or even in timg to the music..This indicates' our algorithm
tion and dynamic programming modules with function enables real-time accompaniment composition that could
parameters adjusted from those used in Figure 7. be played simultaneously with the original input. This

. could be used for situations such as impromptu ensemble
As shown above, our system can produce a variety of,

) ) sessions where the appropriate sheet music cannot be
different arrangements from the same input, based on th‘?‘nade ready on time, where members of the ensemble are

parameter settings of the dynamic programming module.,, s onfigant with arranging their own music or where

Curren':ly,fthe tun;:é; of ?datr)ar?etasgoue mar?uallyhby each member wants a different level/style of accorpan
users. In future, thee could be learned through machine o 15 each other but still perform together.

learning and applied based on different composer/genre ACC could be applied as a learning tool for composers
st\)//\lle etc. rodre:;le(;;[ user prefe{r)en;es. . in th and performers to use when learning how to compose
e excluded the usage abrrharmonic tones in the 1, gicq| arrangements themselves. Simple compositions
above examples to better show the differences betwee'broduced by ACC could be used as a starting block for
different outputs. The usage .Of non—harmomc OleS  ihese musicians whom are not used to arranging music
also supported in ACC, a!lowmg for passing notes and ihemselves. ACC would provide a musical arrangement
further arrangement diversity as shown in F|gurbI®/.v- with specified features for musicians to then work off
ever, there are not many rules_lmplemented in the current hen composing their own music. As the musician gains
version of the system regarding the placement of NON-composition skills and confidence, parameters in ACC

hafmon'c 'tones, res“'“f‘g n rglatlyely poor arrgngement could be tuned to produce less ornamented compositions
quality. This we planonimproving in future versions of ¢, the musician to work off, or even more ornamented

ACC. compositions for the musician to learn from.
As the example in Figure 10 shows, ACC is capable of
" ) F “ producing choral arrangements which both follows basic
&7 B i i L e L & rules of classical music theory and also sounds interesting
p to the listener, even with the many different types of
674 =SS SSS= == Sas E chord symbolsMusical features can be adjusted indivi
S S P ually for each player in the group of musicians, and yet a
ES = = SsS s st s ss s uniformed sound can be maintained in the ensemble as a
N o , whole.
\)' % — i e e e e e e e o=
_ ) _ 4. CONCLUSIONS
Figure 9. System output made using rule-base applic
tion and dynamic programming, with usage of non- In this paper, we have presented a novel four-part choral
harmonic tones. music harmoniser capable of producing, in real-time,
o multiple outputs from the same input, with different-m
3.2 Application sical features. The AutoChemCreator utilises the ben

Although we have implemented rules from theories of fits of using both heuristic rule-base application aye d
classical music in ACC, we do not limit the scope of its hamic programming. ACC prodes harmonised choral
application to the genre of classical music only. In fact, music from lead music which both follows principals of
one of the reasons we chose lead music, not classicdharmony and sounds interesting. ACC works well with
melodies or choral music, as the input data format, waspopular music, indicating potential for future implamwe
because we recognise this type of sheet music is fairlytation in practical applications.
easy to obtain for many popular and traditional genres of Combining multiple algorithms in one system has-en
songs through online stores etc. bled producing various outputs from a given input. In
In Figure 10, we show an excerpt from a completed a fyture, we plan on expanding this combined application
rangement of music made using our system. ACC wasfrom just harmonisation to the other processes of ecemp
used on a pop song foumd the RWC Music Database  ijtion also. Manipulation of rhythamon-harmonic tones
[23, 24]. The sheet music used for input consisted of 104 e qdic structure etc. could all be carried out through a

combination of multiple algorithms, producing an even

measures of melody and chord signatures. Dynamic
search was conducted using the distance d=4 fohneig richer diversity of compositions than we have listed in
this research.

bouring pitch distance.
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Figure 10. Example of system output using popular music as input, fiohhink of You” by Jeff Man-
ning (RWC-MDB-P-2001 No. 87).

Though the dynamic search is fast enough for simple
applications, advanced techniques of the search algorithm 5. REFERENCES
could be implemented to enlarge the search space and ) ) )
maintain the minimal execution time. Also, parameters [1] L. Hiller and L. Isaacson, Experimental Music;
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to arrange music in specific musical styles observed in[2] G. Nierhaus, Algorithmic Composition. Springer-
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