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ABSTRACT 

This paper describes AutoChorusCreator(ACC), a sys-
tem capable of producing, in real-time, a variety of four-
part harmonies from lead sheet music. Current algorithms 
for generating four-part harmony have established a high 
standard in producing results following rules of harmony 
theories. However, it is still a challenging task to increase 
variation in the output. Detailed constraints for describing 
musical variation tend to complicate the rules and meth-
ods used to search for a solution. Reducing constraints to 
gain degrees of freedom in variation often lead to gener-
ating outputs which do not follow the rules of harmony 
theories. Our system ACC is based on a novel approach 
of generating four-part harmony with variations by incor-
porating two algorithms, statistical rule application and 
dynamic programming. This dual implementation enables 
the system to gain the positive aspects of both algorithms. 
Evaluations indicate that ACC is capable of generating 
four-part harmony arrangements of lead-music in real-
time. We also confirmed that ACC achieved generating 
outputs with variations without neglecting to fulfil rules 
of harmony theories. 

1. INTRODUCTION 

Automatic composition has captivated the minds of both 
musicians and scientists for decades and many approach-
es have already been attempted in the field of information 
science [1, 2, 3]. Some of these include constraint satis-
faction [4, 5, 6], example based approaches [7], genetic 
algorithms [8, 9], probabilistic modelling [10, 11] and 
rule based applications [12]. Recently, technologies orig-
inally from the field of music information retrieval (MIR) 
are also being used to support people who create musical 
works [13, 14]. 

Harmony is an important element in many music styles, 
especially in those of classical music. Emura describes an 
academic process of musical composition as 1) choosing 
a simple cadence of chords, 2) deciding a melody line 
which follows the structure of the sequence of chords, 3) 

replacing some of those chords with other replaceable 
chords and 4) adding harmonic interest to the piece by 
adding non-harmonic tones [15]. Harmonisation and re-
harmonisation are important aspects in each of these steps. 
This fact makes the appropriate implementation of har-
mony theories crucial in developing automatic composi-
tion systems that incorporate aspects of tonality as those 
found in classical music.  

A particular task often dealt with in the study of auto-
matic harmonisation is that of harmonising a classical 
four-part  chorale from a single melody line. Allan used a 
data set of chorale harmonisations to train Hidden Mar-
kov Models to create four-part harmony [16]. Suzuki also 
used probabilistic models for automatic four-part harmo-
nisation [17], comparing system outputs for when chord 
data was and was not used. 

Rule-based approaches have also been exploited for 
four-part harmonisation. Ebcioğlu developed a rule-based 
system with over 270 rules and used a logic programming 
language for harmonising four-part chorales [12]. Phon-
Amnuaisuk also created a rule-based system and com-
pared it with a genetic algorithm system which had the 
same explicit rules of harmonisation implemented in it 
[8]. Biles used genetic algorithms in creating jazz im-
provisations [9]. MacCallum also used genetic algorithms 
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Figure 1. System Overview. 
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and incorporated mass consumer evaluations to investi-
gate the composition of music through Darwinian pro-
cesses [18]. 

While many four-part harmonisation systems acquire a 
high level of musical quality, it is still a challenging task 
to produce a variety of outputs from a single input. Har-
monisation systems produce chorales that fulfil many 
rules of music theory. Statistical models have been re-
ported to learn different rules of the theory of harmony as 
implicit representations in the system itself, while rule-
base systems are successfully producing complicated 
arrangements that follow specific styles. However, the 
variation in output of these systems is often limited, leav-
ing us an area within the field of automatic harmonisation 
with potential still to be exploited. 

When aiming to gain diversity in harmonisation, we 
find neither increasing nor decreasing rules is the optimal 
solution. If a system extends its set of rules to incorporate 
rules that describe new styles of music, rule formats and 
search methods can become complicated. This will result 
in the system becoming less efficient than it originally 
was, often extending the execution time also. Reducing 
rules to gain extra degrees of freedom will result in a re-
duction of musical quality in the output when held up to 
scrutiny against theories of harmony. Both extending and 
reducing rule sets are still a challenging solution to add-
ing diversity to automatic harmonisation. A new mecha-
nism is needed if the system is to produce diverse harmo-
nisations effectively. 

The rest of this paper explains how we achieved that 
diversity through the combined implementation of a rule-
based application and dynamic programming. In section 2, 
we describe some characteristics of a practical automatic 
harmonisation system and the technology requirements to 
produce its characteristics. We also explain the details of 
the system we implemented, listing some examples of the 
rules used in each algorithm. In section 3, we note the 
evaluations we made of the system before concluding in 
section 4 with a summary of this work and a discussion 
on areas that need future development. 

2. METHOD 

2.1 System Concept 

A robust harmonisation system with practical applica-
tions would have to include the following characteristics. 

1. Is able to produce a variety of outputs, prefera-
bly according to user-specified styles or char-
acteristics. 

2. Is able to be executed in real-time. 

3. Is able to produce “good quality” harmony – 
harmony that follows basic principles of 
style/structure or that can be musically under-
stood uniformly by a general audience. 

These are some fundamental aspects a system must 
simultaneously achieve if it is going to be used in practi-

cal applications of musical composition. While it is rela-
tively easy to achieve one or two of these characteristics 
in a harmonisation system, we have found the simultane-
ous attainment of all three to be more difficult. One rea-
son for this would be that a typical harmonisation system 
will usually apply only a single algorithm (e.g. rule appli-
cation, algorithmic search, pattern matching) to complete 
a given task. Implementing a single algorithm leads to a 
system which is an expert for one task, but less effective 
for another. 

We have developed “AutoChorusCreator (ACC),” a 
harmonisation system that incorporates multiple algo-
rithms into the harmonisation process. By implementing 
multiple algorithms, ACC benefits from the positive as-
pects of each algorithm while covering their weaknesses 
with another. ACC simultaneously achieves all three re-
quirements listed above, thus providing a robust yet flex-
ible harmoniser that can be used in practical contexts of 
music composition. 

2.2 System Overview 

ACC is an automatic four-part choral music harmoniser. 
Users input data of lead music (sheet music with one 
melody line and chord notations) from which the system 
creates a score designed for a four-part voice ensemble. 
ACC is implemented in Java and uses MusicXML for 
input and output data format. 

ACC consists of two modules, each using different al-
gorithms. The first module creates an initial arrangement 
from the input data using statistical applications of a heu-
ristic rule set. This initial arrangement is then passed on 
to the second module, which uses dynamic programming 
to search for the optimal output out of those similar to the 
initial arrangement. Each rule in the heuristic rule set in 
the first module is applied to the input music according to 
a probabilistic model with parameters alterable by the 
user. 

The evaluation functions in the second module mostly 
consist of rules derived from classical theories of harmo-
ny, but also include functions to evaluate other features of 
music that do not relate to harmony. Each function is 
weighted by a parameter and is applied to a piece of mu-
sic to produce a cumulated evaluation score which is then 
used in the search process. By altering the parameters in 
each module, ACC is able of producing multiple ar-
rangements of chorale music from a given input data. We 
have listed a diagram of the system overview in Figure 1. 

Below we will describe in detail how we have integrat-
ed these two algorithms to produce a composition system 
that meets the three criteria we discussed in the section 
above. 

2.2.1 Output Diversity 
Users have diverse preferences regarding music even 
within the same music genre, and so a practical harmoni-
sation system must also incorporate diversity into its sys-
tem output. Harmonic variety not only makes a system 
interesting, but also creates a system potentially accepta-
ble by a wider range of users. 
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Harmonisation systems often focus on finding optimal 
chord progressions that match a given melody, but spend 
little effort finding the best combination of notes within 
each chord. Although the decision of chord progressions 
is an important procedure, it is only a small part of the 
harmonisation process and a limited aspect of output di-
versity. Chord progressions determine the space from 
which the note in each part must be chosen for, but it is 
other musical qualities (e.g. movement in a single part, 
reflection of musical intensity in the melody to other 
parts, technical interest matching each performer’s physi-
cal ability) that determine the final output. These musical 
qualities we will call “musical features.” 

The two algorithms implemented in ACC assist each 
other in achieving diverse musical features in output ar-
rangements. As will be discussed in section 2.2.3, dynam-
ic programming was incorporated as the second module 
to assist in finding an optimal output within a reasonable 
amount of time. Although dynamic programming is an 
efficient search algorithm, it will only find one output 
from a given input. To create various outputs from even 
the same input, ACC first creates an initial arrangement 
using statistical rule application and then passes this on as 
the seed for the search algorithm in the dynamic pro-
gramming phase. Each heuristic rule is applied to por-
tions of the song at random, producing a different initial 
arrangement for the dynamic programming module to 
work on each time the programme is executed. 

We compiled a set of heuristic rules from observations 
of pre-composed pieces of music to use in the first algo-
rithm. The compiled set of ten rules was far from being a 
complete implementation of musical arrangement proce-
dures. We did find, however, that this limited set of rules 
was still adequate in examining whether the two-
algorithm implementation of the harmonisation process 
could produce various arrangements from the same piece 
of music. 

The rules were implemented so that they conducted 
simple structural alterations in each accompaniment part. 
ACC first chooses for each part a note contained in the 
chord listed in each measure. If there are no chord nota-
tions in a given measure, then the previous chord notation 
is used. Once the first note for each measure has been 
chosen, ACC applies rules such as those listed below to 
produce more notes to fill each measure. 

 If two consecutive notes in the same part have 
the same pitch, move the later note to another 
pitch within the same chord (Figure 2.)  

 If the distance between two consecutive notes 
in a part is a third, then halve the length of the 
first note and add a second note of the same 
length. The second, new note is raised to the 
next note in the key creating a “stepping” ef-
fect (Figure 3.)  

Each rule n is only applied to an applicable passage of 
music at the probability pn (0 ≤ pn ≤ 1). This allows for a 
diverse range of initial arrangements which are then 
passed on to the dynamic programming module. Notice 
these rules are designed to produce structural diversity 
only and do not directly represent any particular music 
theory. 

2.2.2 Search Area Reduction 
The computational time of harmonisation systems in-
crease exponentially with the length of the music given as 
input. This makes search area reductions essential in 
keeping system execution time minimal. Search area re-
ductions can be implemented as computational tech-
niques borrowed from studies of search algorithms, or as 
active search area reductions in the algorithm itself using 
knowledge of the music being composed. This musical 
knowledge can be constructed manually from music theo-
ries or learned automatically from corpuses of pre-
existing compositions through machine learning.  

The second module of ACC consists of a dynamic pro-
gramming algorithm. Dynamic programming is a compu-
tational algorithm which can be applied to problems 
where the main problem is subdivided into multiple sub-
problems, and the accumulation of optimal solutions from 
each sub-problem composes the optimal solution for the 
main problem [19]. Dynamic programming has been used 
in other music composition systems also, such as Fuka-
yam’s system Orpheus [20]. In our system, we have tak-
en the task of harmonising the whole song and broken it 
down into a group of the subtask “finding the optimal 
combination of notes played simultaneously across four 
parts at each point in the song.” By finding the optimal 
combination of notes at each moment of the song, our 
system will find a desirable solution to the harmonisation 
task. 

To evaluate each set of four notes, we have chosen to 
include the theory of harmony of classical music as will 
be discussed in section 2.2.3. The classical theory of 
harmony does not only evaluate each group of notes on 
their own, though. Harmony theories classify groups of 
pitches into “chords.” Evaluation is conducted on the 
structure of each individual chord and also its relation to 
the chords surrounding it. In the current version of ACC, 
we have implemented the rules which look at the struc-
ture of each chord and the relation to its preceding chord 
only. 

Figure 2. Example of Heuristic Rule (1). 

Figure 3. Example of Heuristic Rule (2). 
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The dynamic programming module takes the initial ar-
rangement composed in the rule-based module and con-
ducts a search by altering each note by d semitones in 
either direction. The distance d therefore is the key factor 
in determining the extent to which dynamic programming 
conducts its search. The number of possible combinations 
of notes for an entire song can be annotated as  ሺ    ሻ    (1) 

where   denotes the number of semitones a note can be 
moved in one direction and   is the number of chords 
(combination of four notes) to be analysed in a song. 

As can be seen from equation 1, the computational time 
will increase exponentially as the length of the song in-
creases. This is why we have limited the search to those 
songs similar to the initial song composed by the first 
module.  

2.2.3 Evaluation Using Music Theory and Musical Fea-
tures 
In one way or another, every harmonisation system in-
cludes an evaluation module. This could be implemented 
in the search process so that the system makes an implicit 
evaluation at every decision. It could also be implement-
ed at the end of the composition cycle as an explicit eval-
uation function. The former would evaluate local combi-
nations of note while the latter could take into account the 
global structure of the entire musical piece. The evalua-
tion process could also be excluded from the programmed 
system and given to the user as a manual operation. This 
evaluation would reflect the user impressions of the com-
posed harmony. In general, the evaluation, and therefore 
the definition of “good harmony,” will contain three as-
pects; local structure, global structure and user impres-
sion. We have added the evaluation procedure into our 
system as weighted functions used in the search algo-
rithm of the second module.  

Having formulated theories of musical structure is a 
particular characteristic of classical and popular Western 
music. While many theories for each of the individual 
elements of these music, such as melody, harmony and 

rhythm, have been formulated over time, the theory of 
harmony is the most refined and formalised of them all.  

A difficulty found with applying rules of harmonisation 
in a computer programme is that some combinations of 
notes can only be attained if there is a correct sequence of 
notes leading up to, and after, that point in the music. By 
unintentionally choosing one different note combination 
somewhere in the song, a system could limit itself from 
ever reaching a particular combination of notes elsewhere 
in the music. One must keep in mind search algorithms 
need flexibility to search multiple combinations of notes 
throughout the whole song to find various output note 
sequences.  

We have implemented both functions made from rules 
of harmony and functions that describe musical structure 
(musical features) in the search algorithm of the second 
module. The list of functions regarding the theory of 
harmony was compiled from Geidai Wasei [21], the text 
book on the theory of harmony of classical music most 
used by educational institutes in Japan [22]. Geidai Wasei, 
like other formalised theories of harmony, consists of a 
set of rules prohibiting specific combinations of pitches 
(e.g. seventh notes of a chord must not be doubled in a 
chord) and chord progressions (e.g. no parallel fifths). 
The easiest implementation of this type of rule is in the 
form of a Boolean function which determines whether the 
rule is broken at a certain point in the music or not. This, 
however, does not allow for discrimination between two 
songs which both break a certain rule but in different 
ways (e.g. two songs may have a doubled seventh note, 
but in fact one song may have the seventh note tripled, 
not just doubled). Therefore, when possible, we have 
implemented the rules with a continuous evaluation func-
tion to give a more discriminative preference ordering to 
any two pieces of music. See Figure 4 for examples of 
these functions. A total of 13 rules (A1-A5, B1-B3 and 
C1-C5) from Geidai Wasei were implemented as evalua-
tion functions in the second algorithm of ACC. 

Along with rules of formal musical theory, we have al-
so incorporated rules regarding other musical features, 
such as the structure of each part and the number of notes 
in each bar of music. Many rules from the theory of har-

Figure 4. Examples of continuous evaluation functions based on classical rules of harmony from [21], used in the dynamic pro-
gramming module. 
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mony exclude specific combination of notes from the 
final output. However, there are very few rules which 
recommend a preferable combination of notes. We incor-
porated functions that evaluate musical features, not just 
harmony, so that we could manipulate the final output 
through explicit knowledge, rather than allowing the sys-
tem to make random decisions from arrangements with 
similar harmonic evaluations. 

 Musical features evaluated in the dynamic program-
ming algorithm included those such as “amount of pitch 
movement in each part” and “vocal range”. Users input 
their preferred amount of each musical feature, such as 
“minimal pitch movement” or “vocal range no larger than 
one and a half octaves, starting from middle C.” Each 
function then evaluates how different a musical arrange-
ment differs from the user’s preference, and gives a cor-
responding score. The evaluation result of each function 
is weighted and added to provide one final score which 
represents that arrangement. That score is then used in 
searching for an optimal arrangement as the final output. 
Altering the weights on each function affects the amount 
of influence each represented musical feature has on the 
search process. Adjusting these weights gives the user 
some control over the ultimate output produced from a 
given input. 

3. RESULT 

3.1 System Performance 

In this section, we describe the performance of our sys-
tem when using the two system modules individually and 
combined. We have used a popular children’s song “If 
You’re Happy and You Know It” as the example input, 
as shown in each of the figures below. 

In Figure 5, we show an example output when using 
dynamic programming only. Each part tends to move in a 
monotonous way, as can be seen in the up-down move-
ments of the tenor and bass parts. This is because when 
using dynamic programming only, each part starts with 
the same note right through the measure. The same rules 
of harmony are applied to every set of chord, forming 
similar movements through each measure.  

 

Figure 5. System output made using the dynamic pro-
gramming module only. 

Figure 6 shows an arrangement composed using the 
rule-base module only. Music made using heuristic rules 
only are prone to go against basic rules of harmony (e.g. 
parallel movements between parts) as they are not 

implemented explicitly in the rule base. Only using this 
module limits the diversity of output arrangements as 
they are solely dependant on the set of rules provided in 
the system. The amount of explicit knowledge 
represented in the rule set alone determines the variety in 
the output. 

 

Figure 6. System output made using the rule-base ap-
plication module only. 

As seen in Figure 7, a combined application of both the 
heuristic rule-base module and dynamic programming 
module produces an arrangement of music not attainable 
by just either of the algorithms. Each voice is altered to 
better fulfil rules of harmony and other features imple-
mented in the dynamic programming module. The con-
sistent movement observed in the tenor and bass parts of 
Figure 5 (dynamic programming only) has been altered to 
a more varied arrangement. 

 

Figure 7. System output using both rule-base applica-
tion and dynamic programming modules. 

Figure 8 shows another example of using both modules 
but with some of the parameters altered. Compared to the 
output of Figure 7, this output has less movement in the 
accompaniment parts, providing an easier arrangement 
for amateur performers to use. Notice, though, how there 
is still movement in the tenor and bass parts at the end of 
measure two. The system has not simply allocated the 
same note to each part throughout the measure. This 
small variation in arrangement is caused by the move-
ment in the melody line and dynamic programming 
searching for the best combination of notes in the last two 
chords of that measure, yet with as minimal movement as 
possible. 
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Figure 8. System output using both rule-base applica-
tion and dynamic programming modules with function 
parameters adjusted from those used in Figure 7. 

As shown above, our system can produce a variety of 
different arrangements from the same input, based on the 
parameter settings of the dynamic programming module. 
Currently, the tuning of parameters is done manually by 
users. In future, these could be learned through machine 
learning and applied based on different composer/genre 
style etc. to reflect user preferences. 

We excluded the usage of non-harmonic tones in the 
above examples to better show the differences between 
different outputs. The usage of non-harmonic tones is 
also supported in ACC, allowing for passing notes and 
further arrangement diversity as shown in Figure 9. How-
ever, there are not many rules implemented in the current 
version of the system regarding the placement of non-
harmonic tones, resulting in relatively poor arrangement 
quality. This we plan on improving in future versions of 
ACC. 

 

Figure 9. System output made using rule-base applica-
tion and dynamic programming, with usage of non-
harmonic tones. 

3.2 Application 

Although we have implemented rules from theories of 
classical music in ACC, we do not limit the scope of its 
application to the genre of classical music only. In fact, 
one of the reasons we chose lead music, not classical 
melodies or choral music, as the input data format, was 
because we recognise this type of sheet music is fairly 
easy to obtain for many popular and traditional genres of 
songs through online stores etc. 

In Figure 10, we show an excerpt from a completed ar-
rangement of music made using our system. ACC was 
used on a pop song found in the RWC Music Database 
[23, 24]. The sheet music used for input consisted of 104 
measures of melody and chord signatures. Dynamic 
search was conducted using the distance d=4 for neigh-
bouring pitch distance. 

The system execution time is reasonable for real-time 
applications. In this song’s case, ACC took roughly 60 
seconds to compose the accompaniment parts and create 
the output data. This is much shorter than the total dura-
tion of the original song, which is 4 minutes and 49 sec-
onds. ACC is capable of composing choral arrangements 
much faster than the speed a song is played at. As the 
search only looks at the relation of chords with those pro-
ceeding it, the output could be produced a bar at a time, 
or even in time to the music. This indicates our algorithm 
enables real-time accompaniment composition that could 
be played simultaneously with the original input. This 
could be used for situations such as impromptu ensemble 
sessions where the appropriate sheet music cannot be 
made ready on time, where members of the ensemble are 
not confidant with arranging their own music or where 
each member wants a different level/style of accompani-
ment to each other but still perform together.  

ACC could be applied as a learning tool for composers 
and performers to use when learning how to compose 
musical arrangements themselves. Simple compositions 
produced by ACC could be used as a starting block for 
these musicians whom are not used to arranging music 
themselves. ACC would provide a musical arrangement 
with specified features for musicians to then work off 
when composing their own music. As the musician gains 
composition skills and confidence, parameters in ACC 
could be tuned to produce less ornamented compositions 
for the musician to work off, or even more ornamented 
compositions for the musician to learn from. 

As the example in Figure 10 shows, ACC is capable of 
producing choral arrangements which both follows basic 
rules of classical music theory and also sounds interesting 
to the listener, even with the many different types of 
chord symbols. Musical features can be adjusted individ-
ually for each player in the group of musicians, and yet a 
uniformed sound can be maintained in the ensemble as a 
whole. 

4. CONCLUSIONS 

In this paper, we have presented a novel four-part choral 
music harmoniser capable of producing, in real-time, 
multiple outputs from the same input, with different mu-
sical features. The AutoChorusCreator utilises the bene-
fits of using both heuristic rule-base application and dy-
namic programming. ACC produces harmonised choral 
music from lead music which both follows principals of 
harmony and sounds interesting. ACC works well with 
popular music, indicating potential for future implemen-
tation in practical applications. 

Combining multiple algorithms in one system has ena-
bled producing various outputs from a given input. In 
future, we plan on expanding this combined application 
from just harmonisation to the other processes of compo-
sition also. Manipulation of rhythm, non-harmonic tones, 
melodic structure etc. could all be carried out through a 
combination of multiple algorithms, producing an even 
richer diversity of compositions than we have listed in 
this research. 
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Though the dynamic search is fast enough for simple 
applications, advanced techniques of the search algorithm 
could be implemented to enlarge the search space and 
maintain the minimal execution time. Also, parameters 
used in the two modules can be learned from corpuses 
using machine learning techniques. This will enable ACC 
to arrange music in specific musical styles observed in 
the music of other composers and genres. 

In this research, we included chord symbols in the input 
music so that we could focus on obtaining diversity with-
in a single chord progression. Diversity of chord progres-
sions themselves can be easily obtained, though, by im-
plementing common chord replacement techniques al-
ready used in practical compositions. Furthermore, the 
system can be developed to incorporate automatic chord 
estimation techniques from other research such as [25, 
26], so that only a melody line need be given as input. 
Automating a wider portion of the composition process 
will allow users to manipulate the outcome further to 
better meet their preferences. 
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