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ABSTRACT 

Making the science and technology of computer music 
comprehensible to musicians and composers who had 
little or no background therein was a part of Max 
Mathews’ genius.  In this presentation I will show how a 
simple diagram led to the essential understanding of 
Claude Shannon’s sampling theorem, which in turn 
opened up a conceptual path to composing music for 
loudspeakers that had nothing to do with wires, cables 
and electronic devices, but led to learning how to pro-
gram a computer—to write code.  The change from de-
vice-determined output (analog) to program-determined 
output (digital) was a major change in paradigm that led 
to my realization of an integral sound spatialization sys-
tem that would have been impossible for me to achieve in 
any other medium.  Along the way, the discovery of FM 
Synthesis provided not only a means of creating diverse 
spectra but coupled with a ratio from Euclid’s Elements 
produced an unusual and productive connection between 
spectral space and pitch space and a path that leads …? 

1. INTRODUCTION 

Claude Shannon’s 1948 paper, “A Mathematical Theory 
of Communication” [1] is the hard-edged theory that un-
derlies the flow of information in today’s complex digital 
world of computers, large and small, tablets, mobile 
phones, pads and pods—capable of “sensing” sound, im-
age, touch, location —all complex machines, the com-
plete understanding of which is beyond the capacity to 
know of any single human being. It is a summation of 
Shannon’s own work and that of his colleagues and pre-
decessors.  The timing was propitious as the first stored-
program computers were just being developed. The paper 
includes the first use of the word bits.1 And theorem 13, 
the sampling theorem, is critical to the connection be-
tween continuous and discrete signals. In his article, “The 
origins of the sampling theorem,” H.D. Luke traces the 

rich history of the sampling theorem that extends back to 
1848 [2].   

1 “If the base 2 is used the resulting units may be called binary digits, or 
more briefly bits, a word suggested by J. W. Tukey” [1]. 
 

 Shannon’s paper is the first reference in Max 
Mathews’ famous 1963 article “The Digital Computer as 
a Musical Instrument” [3], because the sampling theorem 
is the foundation on which Mathews based much of his 
early work. His research included speech, hearing and 
computer music where the loudspeaker is the ultimate 
sound source.  Mathew’s diagrammatic representation of 
the sampling theorem opened the door to my understand-
ing of what was otherwise incomprehensible because of 
my own “nothing-but-music” background. 

Euclid’s line, to which I refer in the title, is its division 
into extreme and mean ratio now commonly known as 
the Golden ratio.  This ratio became of interest to me af-
ter composing Turenas (1972), in which I made extensive 
use of both harmonic and inharmonic spectra.  I looked 
for other irrational numbers to produce inharmonic spec-
tra and found that the Golden ratio had particularly inter-
esting properties in this application. 

2. MATHEWS’ DIAGRAM 

My interest in music composed for loudspeakers 
stemmed from a few musical experiences that had a pro-
found effect on the way I thought about music.  From 
1959 until 1962 I studied in Paris where contemporary 
music was notably present.  Some concerts included elec-
troacoustic music— the Domaine Musicale concerts at 
the Théâtre de l'Odéon and the Groupe de recherches 
musicales (GRM) presented concerts at the French Radio 
that were exclusively electroacoustic.  Some of the music, 
composed for 4-channels was, quite literally, head turn-
ing.  From my youth I had a fascination with cavernous 
spaces and echoes, their disorienting effect on otherwise 
familiar sounds and the spatial aspect of this music pro-
voked a desire to compose for loudspeakers—imagined 
sounds in imagined spaces.   

    

Figure 1. This is Mathews’ schematic diagram of the 
sampling process from 1963 [3], at which time electro-
acoustic music was exclusively in the analog domain. 
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But, I was well aware that the stringent technical re-
quirements, knowledge and means to create music for 
loudspeakers in the 1960s were accessible to very few 
composers. 

In 1964, because of a bit of serendipity, I was given 
Mathew’s article.  It was the first diagram, which caught 
my attention, see Figure 1. It presented a comprehensible 
face of the sampling theorem, which for me, and perhaps 
others, was suggestive and inspiring—even poetic in that 
it showed a path to electroacoustic music that bypassed 
what for me was technological clutter, a path that would 
allow the composition of “any perceivable sound” [3] 
bringing musical creation to the edge of my imagination. 

2.1 Sampling’s Simplicity 

Immediately striking in the diagram is that there are but 
three devices and a computer, none of which have 
changed over time in their functional relationship, but all 
of which have changed over time in their cost, quality 
and precision—for the better!  
   Now, dear reader, imagine a 29 year old graduate stu-
dent composer, fifteen years from his last math class, 
never having seen a computer, but with vivid imaginings, 
however vague and inchoate, of composing music in 
space.  Imagine further, the conceptual breakthrough 
when with images in mind of electroacoustic music stu-
dios—filled with electronic equipment, cables, wires, 
multiple microphones, spinning loudspeakers and stern-
looking engineers in white coats—I understood the  
implications of Mathew’s Figure 1.   

2.2 The Soft Complexity Behind the Samples 

Already familiar with complex symbols as representation 
of sound, musicians seemed to be undaunted by learning 
to program a computer to do the same.  Having read 
Mathew’s article early in 1964 and the comprehensive 
article by James Tenney, “Sound-generation by means of 
a digital computer” [4], in April, I took a new course of-
fered at Stanford University “Computer Programming for 
Non-Engineers.”   With the confidence that I could pro-
gram a computer, I set about to learn acoustics and psy-
choacoustics, the latter highlighted in Mathew’s article as 
an area of special importance to music perception.  
   Tutored by an undergraduate math major, tuba player, 
and incipient hacker, David Poole—my angel—by Sep-
tember 1964 (just 50 years ago!) we had generated our 
first sounds using Mathew’s Music IV program. 2  

   The Artificial Intelligence Laboratory provided me 
off hour computer time and a population of skilled re-
searchers in fields ranging from linguistics to philosophy, 
speech, physics and, of course, computer science and 
electrical engineering, any one of whom could answer the 
many questions that I posed as I developed a sound spati-
alization program.  I realized a quad system in 1968, after 
cajoling an EE student to build a 4-channel DAC with the 

2 The program was run on an IBM 7094, a 1301 disk drive, which was 
shared with a Digital Equipment Co.  PDP-1, whose graphics display’s 
x, y ladders provided DACs. 

promise of sounds swirling and swooping from every-
where, see Figure 2.  

Completing the quad spatial system was a very im-
portant moment in my personal history and in the direc-
tion that the Computer Music Project—and eventually 
CCRMA—would take, for several reasons:  While computers were not yet powerful 

enough to synthesize and process sound in re-
al-time—hands-on and favoring immediate re-
sponse—they would be some day (as we 
know very well with today’s technology).    Computer synthesis provided the composer di-
rect control of the material of music, as a 
painter has with paint and canvas, allowing 
the accomplishment of two very different but 
complementary processes — joining the struc-
ture of the sound itself to the structure of mu-
sical form.  I realized that those having motivation and 
perseverance, but no special competence in 
building electronic devices, were presented 
with a means to engage in a medium, and at a 
high level of abstraction, that was a defining 
musical advance in the 20th century—music 
composed for loudspeakers. 

The discovery of FM Synthesis in 1967 was the result 
of searching for lively sounds that had some internal dy-
namism that made them easy to localize.  Over the next 
few years I developed FM synthesis with Jean-Claude 
Risset’s analysis-based synthesis of trumpet tones [5], 
providing a key insight. 3 

 

3 Joined by Leland Smith, then in 1968 by J. “Andy” Moorer and then 
later by John Grey and Loren Rush, the research at the Computer Music 
Project flourished.  The Center for Computer Research in Music and 
Acoustics (CCRMA) was founded in 1974. 

Figure 2. Finding a graphic solution: the distance, azimuth 
and velocity cues of a moving sound are captured by plot-
ting points along the trajectory at a constant interval of 
time. Doppler shift is derived from the radial velocity. I 
used the Cartesian quadrants for naming the channels. 
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After seven years of development and study, I had ac-
quired the knowledge and built the tools to a sufficient 
level of sophistication to realize two compositions— Sa-
belithe (1971) and Turenas.  An extensive account of this 
early work, “Turenas: the realization of a dream,” was 
presented at the Journées d’Informatique Musicale in 
2011 [6]. 

3. EUCLID’S LINE 

Euclid defines what is now known as the Golden ratio in 
Elements, Book VI, Definition 3 [8]. 

A straight line is said to have been cut in extreme 
and mean ratio when, as the whole line is to the 
greater segment, so is the greater to the less.  

 
AB : AC = AC : CB                              (1) 

or 

 
j =

1+ 5

2
j =1.618033...

                              (2) 

 
The ratio in its algebraic form (equation 2) is one of the 
most studied of numbers, with many claims made over 
centuries in regard to its presence in nature, art, music, 
etc.—many are probably extravagant claims.  The ratio is 
implicit in the formation of the pentagram and perhaps 
known to the Pythagoreans almost three centuries earlier. 
However, my interest in this ratio came from another 
point of view. 

3.1 The Golden ratio and FM Spectra 

In FM synthesis the distribution of the spectral (side-
band) components are determined by the relationship 
between the carrier and the modulating frequencies.  For 
inharmonic spectra in Turenas, I used a carrier frequency 
to modulating frequency ratio of 1:√2.  Looking for other 
irrational numbers that satisfied the constraint that their 
fractional part not be small, as is, for example, π, I ex-
plored the sound and attributes of the Golden ratio.  
When the carrier and modulating frequencies are both 
different powers of φ, four of the resulting partials are 

also powers of φ, see Table 1.  This unique attribute 
caught my attention, as this is not the case with √2 or any 
other irrational number that I am aware of.   

3.2 The Golden ratio and the Pitch Space 

I then “discovered” 4 that powers of φ were related in the 
same way as Fibonacci numbers, as seen in Equation 3. 

 

j n+1
=j n +j n-1

n =1, 2,3...
                             (3) 

 
Expanding out powers of φ in log frequency results in 

an equal intervallic division of pitch, as is the case with 
powers of 2.   I have referred to the interval based on this 
division as a pseudo-octave [7], with an equal tempered 
division of the pseudo-octave into nine scale steps. I call 
this the “Stria scale” (StrScl), for the composition in 
which it was first used.    

In three of my compositions I exploited this division of 
the pitch space and the complementary inharmonic spec-
tra based on the φ and FM synthesis (φFM) as shown in 
Table 1,  Stria (1977) — φFM spectra, [9]  Phoné (1981)—harmonic spectra of synthe-

sized singing voice mixed with φFM spectra,  Voices (2005, v.3 2011)—harmonic spectra of 
soprano’s voice mixed with φFM spectra and 
synthesized singing voice. 

Together with a longstanding interest in aspects of 
Greek mythology and history, especially the Pythia and 
her origins, the Golden ratio and the Oracle of Delphi 
came together in Voices for soprano and interactive com-
puter.  But on the way, I became fascinated with the sing-
ing voice.  

3.3 The Singing Voice: Phoné and Voices 

In 1978 Jean-Claude Risset invited me to spend a year at 
IRCAM.  Based on Michael McNabb’s demonstration in 
Dreamsong (1978) that capturing the fundamental fre-
quency (phonation frequency) of a sung female vowel 
tone through time, is to capture the signature of the sing-
ing voice, even if it is a sine wave, I set about to synthe-
size the singing voice with FM synthesis. Taking ad-
vantage of McNabb’s important insight and Johan 
Sundberg’s vast knowledge of the science of the singing 
voice, I profited greatly from his presence at IRCAM and 
was able to synthesize a number of sung vowel tones.   
   By setting the modulation frequency at the phonation 
frequency (pitch frequency) and the carrier frequencies at 
the closest harmonics to a given vowel’s formant fre-
quencies, I successfully modeled the target spectrum, as 
shown in Figure 3. The relationship of the spectral model 
to the signal generation can be seen in Equation 4.  With 
an appropriate mix of a piece-wise linear random func-

4 This was a “discovery” in that in 1974, I knew that the ratio between 
consecutive numbers of the Fibonacci sequence were an approximation 
of φ, but I had no knowledge of the same relationship between the pow-
ers of φ. 

SIDEBAND (SB) FREQUENCIES FOR 
fc=1000 * φ0 and  fm=1000 * φ1 

order Lower 
SB 

  Upper  
SB 

0 *   Hz    1000 fc Hz 
1 618.03 fc-fm   fc+fm 2618.03 
2 2236.07 fc-2fm fc+2fm 4236.07 
3 3854.10 fc-3fm fc+3fm 5854.10 
4 5472.14 fc-4fm fc+4fm 7472.14 
5 7090.17 fc-5fm fc+5fm 9090.17 

* lower sideband frequencies are the absolute value 

Table 1. Shaded cells show the four low-order par-
tial frequencies that are powers of φ when both the 
carrier and modulating frequencies are powers of φ 
(but not equal). 
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tion and a periodic sinusoidal function to approximate the 
micro-modulation of pitch (phonation frequency) through 
time, the simulations were convincing.  This work is de-
scribed in “Synthesis of the Singing Voice by Means of 
Frequency Modulation” [10]. 
 

    )2sin2sin( 111 tfItfA=e mc                (4)           

               )2sin2sin( 222 tfItfA mc                          

 

 

One might ask why synthesize a singing voice when 
one can sample and then process a real voice?  One an-
swer lies in the kind of control one has over the details of 
the sound material.  With synthesis, sound can be formed 
in ways that are not possible in transformations of sam-
pled sounds.   

John Pierce’s Eight-tone Canon (1966) [11] could only 
have been realized by synthesis because the timbres are 
composed of precisely arranged partials that are ordered 
but not in the harmonic series.  So, too, in Jean-Claude 
Risset’s Mutations (1969), where  a set of pitches is heard 
first as melody, then as harmony and  finally folded into 
timbre [7].  It is the last stage which, again, is composed 
of precisely tuned partials from the set of pitches that 
gives an inharmonic, gong-like sound an ineffable quality 
of sounding “imprinted” pitches. 

It was Mutations that inspired me to extend Risset’s 
powerful idea to another level of control based on my 
research with the singing voice and perceptual fusion 
[12].  Phoné was premiered at IRCAM in 1981. 

Over several years I developed the SAIL5 code around 
the idea of continuous transformations of sounds through 
detailed control of the partials and the conditions in 
which they cohere, or fuse, to be perceived as a single 
source rather than individual partials. As noted above, 
Risset demonstrated in Mutations that sinusoids that 
begin together with amplitude envelopes that are expo-
nential in shape and fall off in duration with increased 
pitch height, sound gong- or bell-like, but imbued with 
harmony.  The onset of such a tone is shown in Figure 4.   

Extending this process to another level of complexity in 
Phoné, each of these sinusoids is the fc1 of a two carrier 
FM process as shown in Equation 4.  The amplitude en-
velopes A1 do not decay to 0, but rise and are joined by 
the other three components of the Equation 4, A2, I1 and 

I2, as the micro-modulation is faded into the mix— a 
smooth transformation to multiple singing voices. 

 
Voices makes use of synthesized sounds only and the 

amplified and processed sound of a soprano. The sounds 
and pitches are based upon φFM spectra and the StrScl 
(and its pseudo-octave).  The question at the outset was 
whether or not a well-trained singer could comfortably 
sing in an unfamiliar spectral complex and in an artificial 
tuning system?  (Details of how the piece was composed 
have been previously described [7].)  The answer seems 
to be yes and I have found independent confirming evi-
dence as to why this may be so. 

4. PARTIALS AND TUNING 

Hiding (from me, at least) in the ever increasing corpus in 
the hearing sciences, is a demonstration CD that has an 
astonishing (to me, at least) and relevant example that 
shows the importance of the complementary relationship 
between spectral space and pitch space.  It is astonishing 
partly because the example is not cast in the context of 
new music, where it is often difficult to make critical, 
objective judgments because both material and context 
are unfamiliar.  This example is a synthesized Bach cho-
rale [13], without artifice, where the tones are composed 
of partials produced by individual oscillators, the ampli-

5 Stanford Artificial Intelligence Language is a procedural language 
developed at Stanford in the 1960s-70s.  The Phoné code was derived 
from the Stria code in the same language. 

Figure 3. Spectral modeling of the singing voice (or any 
sound having prominent resonances) can be realized by 
setting the carrier frequencies, fc1 and fc2 at the harmonic 
frequencies, 2f and 7f, closest to the resonance peaks.  The 
target spectrum in red, was captured by sndpeek.  Band-
widths of the resonances (blue curved lines) are deter-
mined by the indices I1 and I2, here ≈ 1.0.  

Figure 4. A collection sinusoids with frequencies from the 
pitch space sound like a bell at the onset.  Continuing, they 
each become a harmonic in singing voice tones, where the 
change in hue represents the additional harmonics. 
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Figure 5.1 
 

 
Figure 5.2 
 

 
Figure 5.3 
 

 
Figure 5.4 

tudes of which are similar to those of a sawtooth wave.  
However, it is not a sawtooth wave and could not be! 

The chorale is presented four times where each iteration 
sounds a different relationship of tones and tuning.  The 
spectral/tuning renderings of the chorale are represented 
in Figure5.1-4 by a tone having a pitch frequency of 
110Hz, where the red colored equation and division along 
the x axis stand for the pitch space scale and the gray 
equation and grey partial components their frequency 
relation to the pitch space.  

 In Figure 5.1 the base of both equations is 2.0.  
 In Figure 5.2 the base of the pitch equation is 

increased by 10% to 2.1. 
 In Figure 5.3 the base of the spectral equation 

is increased by 10% to 2.1. 
 In Figure 5.4 the base of both in increased  by 

10% 
The 1st corresponding sound example sounds as ex-

pected, simple and synth-boring.  The 2nd and 3rd sound 
examples sound out-of-tune, again, as expected.  But 
the 4th example, where both tuning and partials are 
stretched was not as expected.  I had expected it to 
sound out-of tune, but in a different way than the previ-
ous two.  In, fact it sounded good, surprisingly— more 
interesting that the 1st sound example!   

When I formed the theoretical underpinnings for Stria 
and began the time-consuming sound realization, I had 
wondered if its lissome sound surface was unique be-
cause of its φFM spectra?  And so with Phoné.  Enga-
ing a soprano in Voices was a special challenge, be-
cause I was unsure how the digital precision of synthe-
sis would interact with the suppleness of a real singing 
voice.  But again, the piece is built on the same “plinth” 
as Stria and Phoné.  Finding the Tones and Tuning with 
Stretched Partials [13] example pointed toward, and 
gave weight to, a generalization: building sound struc-
tures where pitch space and spectral space are comple-
mentary may open to an entirely new soundscape.   

5. CONCLUSIONS 

Understanding the implications of Mathews’ diagram 
freed musical ideas that led me into a field of study, re-
search and creation that I could not have anticipated.  The 
Golden ratio fell into my “ear lap” simply because it was 
“in the air”— in the culture of the 1970s with M.C. Esch-
er t-shirts, computer graphics and D. Hofstadter’s Gödel, 
Escher, Bach: An Eternal Golden Braid. 

Much of my inspiration is close to the bits and bytes of 
sound, the spectral-temporal detail—and to the program-
ming language itself, abstract and cool in its generality, 
but often provocative and animating when engaged.   
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